
The method, the tools and rationales for assessing
dynamic memory efficiency in embedded real-time

systems in practice
Christian Del Rosso
Nokia Research Center

Itämerenkatu 11-13, 00180
Helsinki, Finland

Email: christian.del-rosso@nokia.com

Abstract— A dynamic memory management system has to take
care of the allocation and deallocation of memory blocks in a
software system. Real-time embedded systems add some more
constraints to the design and the implementation of dynamic
memory management systems if compared with the PC world.
An increasing number of features are added to embedded mobile
devices, however, resources like dynamic memory are limited.
In addition, in real-time systems, real-time deadlines must be
respected and allocations and deallocations must be done in
due time. In this paper we present a case study on evaluating
dynamic memory management in embedded real-time systems.
We have used a scenario-based approach and used a simulation
environment to evaluate the performance of different dynamic
memory management systems. Our contribution is to present
a practical approach, the tools and the rationales to evaluate
dynamic memory management in embedded real-time systems.

I. I NTRODUCTION

Donald E. Knuth, in the Art of Computer Programming,
Volume 1 [1] has given a good description of what to ex-
pect from dynamic storage allocation algorithms: ”We want
algorithms for reserving and freeing variable-size blocksof
memory from a larger storage area, where these blocks are to
consist of consecutive memory locations. Such techniques are
generally called dynamic storage allocation algorithms”.

The study of dynamic memory management systems started
in the sixties [2], [3], [4], [5], and memory optimization was
then one of the highest priorities at the design stage. At that
time, limited memory demanded algorithms able to efficiently
use the scarce resources available.

Although much research has since been done and the
memory available has increased according to the Moore’s law,
embedded real-time systems such as mobile phones must still
be able to work with limited memory and memory efficiency
is still one of the most important requirements. More and
more features are included in the mobile phones but, on the
other hand, the memory available is limited. While additional
memory can be added, the cost of a product depends heavily
on the amount of memory included.

In embedded systems and in particular in the system an-
alyzed in this paper, there is no compaction of memory and
requests are served using contiguous blocks of free memory.

Additionally, only allocators with explicit references tothe
main memory are analyzed in this paper. Even though current
research is focusing on garbage collection techniques, the
performance of these allocators is still behind memory man-
agement systems with explicit reference to the main memory
like C and C++ [6], [7], [8], [9].

Another sign that differentiates embedded systems from the
PC world is the lack of virtual memory management. Most of
the current embedded systems do not have the MMU (Memory
Management Unit) and the address space is given by the
amount of physical memory available. The heap size is fixed
and there is no possibility to request additional memory, for
example, by using the Unixsbrk function call.

Real-time embedded systems add additional constraints to
the environment as real-time systems have time constraints
that must be respected. Therefore, in analyzing and evaluating
dynamic memory management systems for real-time embed-
ded systems, memory efficiency and responsiveness are at the
same level of importance. In the case a time deadline is missed,
several failures can appear, for example the drop of a phone
call.

Optimizing the dynamic memory management system for
real-time embedded systems requires designing for memory
efficiency and real-time constraints.

In this paper we describe an experience of evaluating
dynamic memory management systems for embedded real-
time systems. In our approach, as a starting point, significant
scenarios are defined. The scenario-based approach defines the
significant scenarios important for the analysis. Trace instru-
mentation was used to extract data from the running mobile
phone software. We have introduced a set of metrics, proposed
with the scope of evaluating dynamic memory management
systems in embedded real-time systems. Data have been
evaluated using a simulation environment where algorithms
and different data structures were tested. The results fromthe
simulation environment have been evaluated and analyzed.

II. DYNAMIC MEMORY MANAGEMENT AND EMBEDDED

REAL-TIME SYSTEMS

A dynamic memory management system is made of a data
structure and its algorithms. The scope of such a system is to
keep track of the memory blocks in use in the system but at
the same time to optimize the usage of memory.

Different algorithms and heap layouts can be used to man-
age the dynamic memory system. Examples of general purpose
algorithms that can be used are best-fit, first-fit, the Doug Lea
algorithm [10] (which is used in Linux), and the Windows
XP allocator [11]. On the other hand, custom algorithms for
dynamic memory management have been used in different
fields when the patterns of data allocations of the applications
are known. Examples of custom allocators are the Apache
web server allocator [12], the C++ Standard Template library
allocator [13] and the GCC compiler allocator [14]. Custom
allocators does not always perform significantly better than
general purpose allocators and general purpose allocatorshave
more advantages in terms of software maintainability and
evolvability [15].

Data structures must also be considered for dynamic mem-
ory management systems. A dynamic memory management
system can be made, for example, either of a single or multiple
contiguous blocks of memory or made of segregated free lists.
Different allocators can then be applied with different policies
in different heap layouts. For example, Microsoft C++ uses
one heap for allocations of less than200 bytes, and a second
heap for all other allocations [16]. The Doug Lea algorithm
[10] manages small objects (smaller than 64 bytes) using exact
size bins of a multiple of8 bytes each; for larger objects it
is a pure best-fit allocator and for very large requests (larger
than 128K) it relies on the system memory mapping facilities
(if supported).

In addition to the considerations above, we must include
the requirements of our environment. In our case, when
evaluating dynamic memory management systems we must
consider the fact that we are analyzing embedded real-time
systems. Limited memory, no memory compaction, and no
virtual memory are properties of this system.

Real time constraints, or the ability of the system to respect
time deadlines, are also one of the main concerns in the
evaluation.

III. F RAGMENTATION AND MEMORY EFFICIENCY

Memory blocks are continuously allocated and deallocated
from the dynamic memory, which leads to a phenomenon
called fragmentation [17], [18], [19]. Fragmentation is the
situation when the memory is divided into used and unused
blocks. Because of high fragmentation the dynamic memory
management system may not able to perform allocations and
subsequently may negatively influence the stability of the
whole system. For example, in figure 1, we have a case of a
failure, because of fragmentation, in allocating a100KB MMS
even though the total free memory is200KB

In order to improve the cohesion of memory, adjacent free
blocks can be coalesced, but if the areas are not contiguous

t1 80KB 80KB 40KB

Biggest Free Block= 80KB
Total Free Memory= 200KB

Allocated Memory Free Memory

100KB MMS

Fig. 1. Fragmentation

Fig. 2. Smallest-Biggest Block Metric

nothing can be done unless reallocation and compaction of the
used blocks take place. A compaction of memory by rearrang-
ing the memory into free and used blocks can be implemented;
however, real-time constraints make this approach unfeasible.
Strict real-time deadlines must be respected and changing the
pointers can leave the dynamic memory data structure in an
inconsistent state.

The main concern in these systems is to limit the fragmen-
tation problem by having large enough free blocks to serve
future allocation requests and to assure real-time requirements.
Metrics that measure fragmentation and memory usage effi-
ciency in the context of embedded systems must be able to
highlight those issues.

Fragmentation and memory efficiency metrics must measure
the efficient of memory use. On the other hand, performance
speed metrics must be used to establish whether the system is
able to satisfy the deadlines and time requirements imposed:
it is not pure speed that counts. In order to evaluate the
fragmentation of the dynamic memory management system,
we have defined a few metrics in the following subsections.

A. Smallest-Biggest Block Metric (SBBM)

When serving a request, the main concern is to find a large
enough free block. Because of fragmentation, a large enough
free block may not be found even though the aggregate amount
of free memory is higher than the request. In the case that a
free block is not found, a failure arises.

The Smallest-Biggest Block Metric (SBBM) gives the
amount of memory of a request that will always succeed in
the scenario. If a larger amount than that given by the metric
is requested, the allocator could fail, see figure 2. The metric
is expressed in Bytes.

To extract the metric, the free list is analyzed during the
entire simulation, and the biggest free block value in the free
list is recorded. At the end of the simulation, we select the
smallest value among the biggest free blocks recorded.

Fig. 3. Free Block metric

B. Free Block Metric - Average Size (FBM-AS)

The Free Block Metric− Average Size (FBM−AS) is
the average size of free blocks in the free list during the
simulation, see figure 3. The metric is expressed in Bytes.

The metric highlights the fact that a heap with larger
free blocks, on average, is more compact, and therefore, less
fragmented.

The metric is expressed in Bytes to compare the average
value with the largest request during the simulation of the
scenario. An indication of a potential problem is shown when
the average is below the amount of the largest block requested
since, in those cases, the request may not be satisfied.

However, to compare this fragmentation value with other
heap sizes, the metric can be normalized to the heap size and
a value between0 and1 can be returned. In case of1 we have
a free heap with no allocations and, in case of values close to
0 we have a heap that is very fragmented.

C. Internal Fragmentation (IF)

Internal fragmentation measures the memory wasted (in
Bytes) when a request is served by a larger free block. The
memory wasted is internal to the allocated block, therefore, it
is called internal fragmentation.

Unfortunately it is not always possible to allocate the exact
size free block, as rounding up the requests, for example,
contributes to the internal fragmentation. In some allocators,
the free block is split and only the necessary chunk of
memory is allocated; however, leaving small blocks in the
memory contributes to the increase of external fragmentation,
especially if the remaining chunk of free memory is less than
the minimum block size allocable in the system.

As an example, segregated free lists do not contribute to the
external fragmentation, but they do contribute to the internal
fragmentation when a request is served by a larger chunk of
free memory.

D. Cost Metric (CM)

Cost plays an important role when a product must be sold.
In embedded systems resources are limited and the usage of
memory must be efficient.

The cost metric (CM) has been defined with the scope of
quantifying the amount of memory needed to run significant
scenarios and subsequently establishing the amount of memory
to be placed in the handset. At the same time, the cost metric
measures the efficiency of the memory usage of different
memory management systems.

The cost metric can answer which one of the allocators is
able to cope with limited memory and therefore, is able to
more efficiently use the memory. Different dynamic memory
management systems, with different algorithms, heap layouts
and parameters, have different cost metric values to run the
scenarios and we are interested in thecheapestones. The Cost
Metric is expressed in Bytes. The cost metric is extracted by
using a program that shrinks the heap size to find the smallest
heap size needed to run the selected scenario. The Cost Metric
can be normalized using the total memory alllocated for the
dynamic memory management. A high cost in this case will
correspond a value close to 0 and for a cheap cost we will
have a value close to 1.

E. Performances Metric (PM)

A different approach is needed when measuring the perfor-
mance speed in a simulation environment. The performance
speed cannot be measured using the execution time.

In order to measure the speed of the different dynamic
memory management systems, the metric for performance
speed is measured as the number of scans needed to access
the memory blocks.

The metrics described here measure performance using the
number of scans in the data structure needed to allocate and
deallocate a memory block. Whenever an application requests
a free block, the dynamic memory management system must
find in due time a large enough free block. At the same time,
when a block is deallocated, it must be inserted in the right
place in the list of the free blocks. For example, a size-ordered
free list will require the insertion of a freed block in the right
position in the list according to its size.

The allocators used in the experiment have implemented the
free list using a linked list data structure. The performance
speed is measured in this case as the number of scans in
the linked list. A different data structure can be used without
invalidating the metric.

The performance speed metrics have been used for memory
allocations and deallocations to measure the average and the
worst case value. The worst case value is important consider-
ing we are investigating real-time systems. In the allocation
scenario are included all the scans needed to allocate the
request, which include the number of scans needed to insert a
remaining free chunk in the free list in case the free block is
split.

The performance metrics introduced have the benefit of
being CPU independent. The advantage is also that the values
are not influenced by the trace instrumentation technique used
for extracting the data. Including trace instrumentation in
the source code adds performance overhead that is not easy
to calculate and in some cases can harm and corrupt the
performance measurements [20], even though attempts have
been made to limit the problem [21].

IV. T HE CASE STUDY

The scope of the experiment was to evaluate and to improve
the dynamic memory management system of Nokia handsets.

Scenario selection is the first step in the process and sets
the focus of the analysis. Scenarios contain the execution of
one or more features. A feature is a user visible functional
requirement, e.g. FM radio. Evaluating the dynamic memory
management system means finding significant scenarios in
terms of memory usage. However, features with strict real-
time requirements must be included and analyzed. Ramps,
peaks and plateaus were the patters described by Wilson et
al. [19] and different patterns of data allocations can be found
executing the scenarios. The features list is the starting point
for selecting significant scenarios. However, in the scenario
selection process, interviews and brainstorming sessionswith
developers and architects are fundamental.

One handset with multimedia features was selected for the
experiment. The products in the Nokia handsets portfolio
include handsets with basic functionalities (i.e. phone call,
SMS) and handsets with multimedia features (i.e. MMS, Video
Recording, etc.). Since we wanted to check also the impact
of multimedia features on the dynamic memory usage, the
multimedia mobile phone selected was representative for the
study.

At the end of the scenario selection phase, significant
scenarios were selected using not only core set features but
also optional multimedia features (since not all products have
multimedia features). The number of scenarios depends on the
analysis scope and the time available for the analysis. A right
balance must be found. A limited number of scenarios means
an analysis better focused; on the other hand, too a narrow
scope prevents a comprehensive and sound analysis. Some of
the key performance scenarios selected were:

• Sending and Receiving5 MMS of 100 KB each
• Browsing the Web
• Downloading and playing a Java Midlet
• Phone Start-Up
By running the scenarios in the handset we extracted the

data of allocations and deallocations and we stored them in
text log files. A summary of the data characteristics extracted
from running the scenarios from the handset are in table I.

Using data of memory allocations and deallocations we
were able to analyze the data characteristics and requirements
of the features selected in the scenarios. A simulation environ-
ment was then used to test and evaluate different allocation
strategies. The simulation environment was designed to test
different allocation strategies, parameters and data structure
for the heap. In order to be able the include additional
algorithms and data structures, the simulator followed the
Abstract Factoryand theBuilder design patterns [22]. The
simulator gave as output the metrics described in III. A good
reference for the design of a simulator for dynamic memory
management systems is [23].

We evaluated different heap layouts and algorithms varying
configuration parameters such as memory size and configu-
ration of the pool system. In this paper, as a demonstrative
example, we present the assessment of the the best-fit algo-
rithm with two heap layouts using as input the data of the
scenarioSending and Receiving5MMS of100KB each.

A heap layout in the experiment was either made of a single
contiguous block of memory or made with a preallocated set
of free lists plus a contiguous heap layout, as in figure 4.
Segregated free lists (or the pool) are preallocated sets ofbins
with fixed-size chunks of memory [24], and the configuration
of the pool is a parameter of the simulation environment. Small
requests were served by the pool system. The bins were size-
ordered and the requests were served in a FIFO (First In First
Out) fashion.

The last phase in process is the analysis of the results
obtained from the simulations. The best dynamic memory
management system does not exist as an absolute concept.
We must be able to evaluate the dynamic memory manage-
ment according to the scenarios selected. A dynamic memory
management might be able to serve large block of allocations
efficiently but small block allocations are more important if the
system is characterized by them predominantly. The processis
iterative and the previous phases can be reiterated more times
if needed.

In table II are summarized the metrics extracted for the
scenario analyzed. The heap layouts in the simulation used
the same amount of memory, with the difference that the heap
plus the pool configuration had the memory split in two data
structures.

In table III are presented the performance speed figures
following the metrics described in section III-E.

V. RESULTS

The scope of the experiment was the evaluation of the
dynamic memory management in the context of embedded
real-time systems (Nokia handsets). In this experiment we
have simulated two heap layouts with the best-fit algorithm
and presented the metrics extracted for one scenario, see tables
II and III.

By analyzing the metrics, we concluded that the single heap
layout presented a more fragmented heap with many small
blocks, as the Free Block Metric-Average Size showed. The
result was not a surprise: in the other heap layout simulated,
the heap with segregated free lists, the small blocks are not
counted since segregated free lists do not contribute to external
fragmentation. However, in addition to presenting a higher
external fragmentation, the single heap layout presented a
higher internal fragmentation.

Conversely, the Smallest-Biggest Block metric (SBBM) is
the reference point to decide if the allocator is good enough.
The SBBM is the value to be compared with the biggest
block size value allocated executing the scenario, see the table
I. In the experiment this value was higher than the value
of the biggest block size allocated during the simulation of
the scenarios, which showed that the problem ofnot enough
memorywas not an issue.

The higher normalized value (cheaper) of the Cost Metric
by the best-fit with a single heap shown that this layout was
able to better optimize the usage of memory and run the
scenario with a smaller memory footprint. The Cost Metric
was extracted by resizing only the heap and, in the heap plus

Scenarios Number of Obj alloc. Average Obj Size Biggest Block Size
in the simulation (Bytes) (Bytes)

Sending and Receiving5 MMS of 100 KB each 781563 92.67 96793

Downloading and playing 119932 83.87 46363

a Java Midlet
Browsing the Web 201744 70.90 38859

Phone Start-Up 26811 50.02 18400

TABLE I

DATA CHARACTERISTICS OF THE SCENARIOS

16B 24B 32B 512B 576B 640Bsize

sorted bins

chunks

+
Heap

Allocated Memory

Free Memory

Fig. 4. Pool System plus Heap

Sending and Receiving Free Block Metric− Smallest−Biggest Cost Metric Internal Fragmentation
5 MMS of 100KB Average Size (Bytes) Block Metric (Bytes) (normalized) Average Value (Bytes)

heap bf 16489.97 669876 0.51 16511.55

heap pool bf 85265.69 327264 0.22 11299.17

TABLE II

METRICS AND STATISTICS FORSENDING AND RECEIVING 5 MMS SCENARIO

Performance Metric− Performance Metric− Performance Metric− Performance Metric−
5 MMS of 100KB Worst Case Allocation Average Scans Allocation Worst Case Deallocation Average Scans Deallocation

heap bf 192 69.12 198 56.31

heap pool bf 30 9.89 16 6.20

TABLE III

PERFORMANCESPEED, SENDING AND RECEIVING 5 MMS OF 100KB SCENARIO

pool data structure, a large part of the memory was allocated
by the pool. The metric gave insights on the boundary between
the heap and the pool system. By reducing the pool size, the
Cost will decrease and therefore, the scenario will be able
to run in a smaller memory footprint. On the otherhand, the
tradeoffs with the other metrics described must be considered.

Looking at the performance speed of the two proposed
dynamic memory managements in table III, we can see that
the best-fit with a single heap layout is extremely slow if
compared with the heap with segregated free lists. The worst-
case allocation and deallocation performance was much higher
in the best-fit single heap layout, and the worst-case value is

important in real-time systems. The free lists in the segregated
free lists were managed using a FIFO strategy, and since
almost90% of the requests were small blocks, the advantages
of the pool system were clearly demonstrated.

The experiment showed that a different heap layout has
an important role in dynamic memory management. A heap
plus segregated free lists was revealed to be a better solu-
tion, especially in situations where there are small patterns
of allocations. However, multimedia features demand larger
contiguous blocks and the single heap layout showed the best
values for the metric SBBM. The increase in the progression of
the largest block size allocated by multimedia features canbe

seen in table I. Therefore, in the future, with the introduction
of new multimedia features in the handsets, the considerations
made may be not valid anymore and a different dynamic
memory management system could be adviced.

The conclusions above may seems obvious, however, only
the assessment and the metrics extracted provided the evidence
for the considerations made. The quantitative evaluation of the
scenario illustrated the patterns of allocations of the system
investigated and the metrics gave an understanding of the
performance and the fragmentation.

VI. D ISCUSSION

In this paper we presented an approach to the investigation
of the problem of evaluating dynamic memory management
systems. The scope of the research was not to show the
best algorithms for dynamic memory management but to
introduce a process of evaluating different strategies forreal-
time embedded systems. WE have presented a method and
defined its steps; in addition, we have proposed metrics to
evaluate different approaches of measuring the efficiency in
terms of memory usage and speed performance.

The analysis is based on the significance of the scenarios.
Therefore, significant scenarios for memory optimization must
be defined well. The data are extracted from scenarios run
in the targeted system, and the data is used as input for the
simulation and subsequently for the analysis. Therefore, it is
the job and primary responsibility of the performance engineer
to define the scenarios that determine the scope of the analysis.
The simulation planning phase ultimately refines the scope
of the analysis and defines the objectives. The metrics must
be representative and highlight the properties important to the
scope of the analysis. The metrics that are defined here, helpto
evaluate the characteristics of dynamic memory management
systems for memory efficiency and speed performance in the
context of real-time embedded systems. No compaction of
the memory is done in the system studied (and no garbage
collector system is used) and the metrics reflect the issue:
the best strategies are the ones that preserve a more compact
memory with large free blocks; therefore, a less fragmented
memory and theFree Block Metricexpress clearly this scope.

The cost metric can be used to understand and quantify
the amount of memory to be allocated to dynamic memory
in a mobile terminal and to evaluate the dynamic memory
management system efficiency. We wanted to be able to
determine and estimate the amount of dynamic memory to be
placed in the handset. At the same time, memory efficiency is
also evaluated by this metric: a dynamic memory management
system that is able to work with less memory is more efficient
and able to maintain a low level of memory fragmentation.

The metrics for memory fragmentation in the experiment
are expressed in bytes; however, they can be normalized
according to the size of the heap and then be used to express
fragmentation without regard of the heap size used. Bytes were
used because theSmallest-Biggest Block Metricand theFree
Block Metric apply only if they can be compared with the
largest block requested during the simulation. If the greatest

memory requested in the simulated scenario is larger than the
metric values, that request could lead to a failure during the
system life-time.

Trace instrumentation was used and the data analyzed
represented the run-time properties of the embedded real-time
system studied. From the analysis emerged the importance
of the patterns of data allocations and deallocations of the
applications and the consequences to the memory management
system. If many small blocks are allocated, a segregated free
lists (pooling system) system is advised. On the other side,
the allocation of dynamic memory to a segregate free lists
data structure may negatively affect large blocks allocations
which are served by a single heap data structure. A balance
in the configuration of these data structures is needed.

The allocator strategies are important but the heap layout
and the configuration of the parameters, such as the definition
of the pool system, also plays an important role.

However, the pooling system presents some challenges
as well. Configuring the pooling system in order to avoid
overflows is not an easy task. The configuration of the pool
should optimize memory usage so no overflow happens, and
at the same time should have the minimum number of pre-
allocated blocks so free blocks are not left unused. The right
number of chunks for each bin unfortunately does not exist
a priori but defining the significant and challenging scenarios
once again is very important here. The fragmentation of the
heap can then be checked using the simulation environment
with different configuration parameters.

A trade-off between memory usage efficiency and perfor-
mance speed must be evaluated by the performance analyst.
The dynamic memory management system must perform fast
enough for the correct functioning of the system and must use
memory efficiently enough to be able to handle all the possible
scenarios a user will encounter.

VII. C ONCLUSION AND FUTURE WORK

In this paper we have presented a case study of the
evaluation and the analysis of dynamic memory for real-time
embedded systems. In addition we have presented a set of
metrics to evaluated different dynamic memory management
systems.

The approach is scenario-based and scenarios are used to
specify the focus of the analysis. In the case study presented,
real traces of memory allocations from one Nokia handset
were used in the simulation environment. The simulation
environment was built for the experiment and it was used to
evaluate two dynamic memory management systems. In the
analysis phase, the different alternatives were compared and
evaluated.

Our aim in this paper is not to present a definitive study on
the algorithms and data structures to be used but to present the
method, the rationales and the tools for assessing embedded
real-time systems in practice.

In future work we aim to extend the analysis of dynamic
memory management by studying in depth the improvements
to be made in every single phase of the method. For example,

potential enhancements and challenges exist in the identifica-
tion of key performance scenarios when embedded systems
are part of a software product family. At the same time,
different heap layouts can be introduced into the simulation
and their performance can be measured against previous
layouts. Moreover, configuration parameters are importantand
we are studying the use of genetic algorithms [25], [26], [27] to
configure the pool system [28]. Dynamic memory management
is a complex problem and must be tackled by considering
all the aspects and not just analyzing the algorithms used.
This approach establishes a framework and a starting point
for future investigations for such an interesting and important
issue in computer science as dynamic memory management.

REFERENCES

[1] Donald E. Knuth. The Art of Computer Programming, Vol 1, Third
Edition. Addison Wesley, 1997.

[2] B. Randell and C. J. Kuehner. Dynamic storage allocationsystems.
Communications of the ACM, 11(5):297 – 306, May 1968.

[3] Paul W. Jr. Purdom and Stephen M. Stigler. Statistical properties of the
buddy system.Journal of the ACM (JACM), 17(4):683 – 697, October
1970.

[4] Kenneth C. Knowlton. A fast storage allocator.Communications of the
ACM, 8(10):623 – 624, October 1965.

[5] J. M. Robson. An estimate of the store size necessary for dynamic
storage allocation.Journal of the ACM (JACM), 18(3):416–423, July
1971.

[6] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard,
and David Tarditi. Marmot: an optimizing compiler for java.Software:
Practice and Experience, 30(3):199 – 232, March 2000.

[7] L. Prechelt. An empirical comparison of seven programming languages.
IEEE Computer, 33(10):23–29, October 2000.

[8] Emery D. Berger and M. Hertz. Quantifying the performance
of garbage collection vs. explicit memory management.OOPSLA,
http://www.cs.umass.edu/ẽmery/pubs/gcvsmalloc.pdf 2005.

[9] Paul Wilson. Uniprocessor garbage collection techniques. International
Workshop on Memory Management, Lecture Notes in Computer Science,
(637):1–42, November 1992.

[10] Doug Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html.

[11] Jeffrey Ritcher.Advanced Windows, 3rd edition. Microsoft Press, 1997.
[12] Apache Foundation. Apache web server: http://www.apache.org.
[13] SGI. Standard template library:

http://www.sgi.com/tech/stl/allocators.html.
[14] Free Software Foundation. Gcc home page: http://gcc.gnu.org/.
[15] Emery D. Berger and Kathryn S. Zorn, Benjamin G.and McKinley.

Reconsidering custom memory allocation.Proceedings of the Con-
ference on Object-Oriented Programming: Systems, Languages, and
Applications (OOPSLA), November 2002.

[16] Microsoft Corporation.Microsoft Windows NT 4.0 Online Documenta-
tion. Microsoft Corporation, Redmon, Washington, 1997.

[17] Mark S. Johnstone and Paul R. Wilson. The memory fragmentation
problem: Solved?Proceedings of the 1st international symposium on
Memory Management, 34(3), October 1998.

[18] John E. Shore. On the external storage fragmentation produced by
first-fit and best-fit allocation strategies.Communications of the ACM,
18(8):433 – 440, August 1975.

[19] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles.
Dynamic storage allocation: A survey and critical review.Proc. Int.
Workshop on Memory Management, Kinross, Scotland, UK, September
1995.

[20] D. Steward. Measuring execution time and real-time performance.
Embedded Systems Conference (ESC), April 2001.

[21] E. Metz and R. Lencevicius. Efficient instrumentation for performance
profiling. Proceedings of the ICSE Workshop on Dynamic Analysis,
(WODA), May 3-11 2003.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns.
Addison Wesley, 1995.

[23] Chia-Tien Dan Lo, Witawas Srisa-an, and J. Morris Chang. The
design and analysis of a quantitative simulator for dynamicmemory
management. The Journal of Systems and Software, 72(3):443–453,
August 2004.

[24] James Noble and Charles Weir.Small Memory Software: Patterns for
system with limited memory. Addison Wesley, 2001.

[25] F. Feitelson, Dror and Michael Naaman. Self-tuning systems. IEEE
Software, 6(12):52–60, March-April 1999.

[26] H. Holland, J.Adaptation in Natural and Artificial Systems. MIT Press,
1992.

[27] E. Goldberg, D. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison Wesley, 1989.

[28] Christian Del Rosso. Reducing internal fragmentationin segregated free
lists using genetic algorithms.Proceedings of the 2nd International ACM
Workshop on Interdisciplinary Software Engineering Research, pages
143 – 150, 2006.

