The method, the tools and rationales for assessing
dynamic memory efficiency in embedded real-time
systems in practice

Christian Del Rosso
Nokia Research Center
Itamerenkatu 11-13, 00180
Helsinki, Finland
Email: christian.del-rosso@nokia.com

Abstract— A dynamic memory management system has to take Additionally, only allocators with explicit references tbe
care of the allocation and deallocation of memory blocks in a main memory are analyzed in this paper. Even though current
software system. Real-time embedded systems add some morgagaarch is focusing on garbage collection techniques, the

constraints to the design and the implementation of dynamic : - .
memory management systems if compared with the PC world. performance of these allocators is still behind memory man-

An increasing number of features are added to embedded molsl @gement systems with explicit reference to the main memory
devices, however, resources like dynamic memory are limite like C and G-+ [6], [7], [8], [9].
In addition, in real-time systems, real-time deadlines musbe

respected and allocations and deallocations must be done in apgther sign that differentiates embedded systems from the
due time. In this paper we present a case study on evaluating

dynamic memory management in embedded real-time systems. PC world is the lack of virtual memory management. Most of

We have used a scenario-based approach and used a simulationthe current embedded systems do not have the MMU (Memory
environment to evaluate the performance of different dynanc Management Unit) and the address space is given by the
memory management systems. Our contribution is to present amount of physical memory available. The heap size is fixed

3 pracic";‘r']e?ﬁ’g:oan‘igh;hzr;‘;ﬂfi r?g?ﬂég%éggorgleﬁr;g Se";;'eﬁs and there is no possibility to request additional memory, fo
ynami y 9 4 " example, by using the Unigbrk function call.

I. INTRODUCTION . o .
Real-time embedded systems add additional constraints to

Donald E. Knuth, in the Art of Computer Programmingthe environment as real-time systems have time constraints
Volume 1 [1] has given a good description of what to exhat must be respected. Therefore, in analyzing and evaguat
pect from dynamic storage allocation algorithms: "We wariynamic memory management systems for real-time embed-
algorithms for reserving and freeing variable-size blooks ded systems, memory efficiency and responsiveness are at the
memory from a larger storage area, where these blocks are#ene level of importance. In the case a time deadline is ohisse
consist of consecutive memory locations. Such techniqtees geveral failures can appear, for example the drop of a phone
generally called dynamic storage allocation algorithms”. call.

The study of dynamic memory management systems started
in the sixties [2], [3], [4], [5], and memory optimization wa Optimizing the dynamic memory management system for
then one of the highest priorities at the design stage. At th@al-time embedded systems requires designing for memory
time, limited memory demanded algorithms able to efficientefficiency and real-time constraints.
use the scarce resources available.

Although much research has since been done and thén this paper we describe an experience of evaluating
memory available has increased according to the Moore’s lasynamic memory management systems for embedded real-
embedded real-time systems such as mobile phones must stile systems. In our approach, as a starting point, significa
be able to work with limited memory and memory efficiencgcenarios are defined. The scenario-based approach défines t
is still one of the most important requirements. More ansignificant scenarios important for the analysis. Tracérins
more features are included in the mobile phones but, on tirentation was used to extract data from the running mobile
other hand, the memory available is limited. While addiéibn phone software. We have introduced a set of metrics, prapose
memory can be added, the cost of a product depends heawilth the scope of evaluating dynamic memory management
on the amount of memory included. systems in embedded real-time systems. Data have been

In embedded systems and in particular in the system a@@valuated using a simulation environment where algorithms
alyzed in this paper, there is no compaction of memory amahd different data structures were tested. The results fhem
requests are served using contiguous blocks of free memaiynulation environment have been evaluated and analyzed.

F M
II. DYNAMIC MEMORY MANAGEMENT AND EMBEDDED [Arocated Memary - [] Free Memory
REAL-TIME SYSTEMS MMS Biggest Free Block= 80KB
Total Free Memory= 200KB

A dynamic memory management system is made of a data

structure and its algorithms. The scope of such a system is to 1| 8o0KB . 80KB . 408
keep track of the memory blocks in use in the system but at
the same time to optimize the usage of memory. Fig. 1. Fragmentation

Different algorithms and heap layouts can be used to man-
age the dynamic memory system. Examples of general purposfi] Alocated Memory [Free Memory
algorithms that can be used are best-fit, first-fit, the Dougy Le
algorithm [10] (which is used in Linux), and the Windowsﬂ| 10KB . L4KE . B |Biggestfree block= 14KB
XP allocator [11]. On the other hand, custom algorithms for
dynamic memory management have been used in differen* malest blocke
fields when the patterns of data allocations of the appticati rZI 1o . 1oKe . o |Bigge“freeb'“k:m“Ij‘>S oo
are known. Examples of custom allocators are the Apache
web server allocator [12], the-6+ Standard Template library s | 22«8 I 12k8 I 6KB |Biggestfree block= 22KB
allocator [13] and the GCC compiler allocator [14]. Custom E—
allocators does not always perform significantly bettemtha Fig. 2. Smallest-Biggest Block Metric
general purpose allocators and general purpose allodzdues
more advantages in terms of software maintainability and
evolvability [15]. nothing can be done unless reallocation and compactioreof th

Data structures must also be considered for dynamic megsed blocks take place. A compaction of memory by rearrang-
ory management systems. A dynamic memory managemgiij the memory into free and used blocks can be implemented:;
system can be made, for example, either of a single or melltiplowever, real-time constraints make this approach urifkasi
contiguous blocks of memory or made of segregated free lisgirict real-time deadlines must be respected and changing t
Different allocators can then be applied with differentipi@s pointers can leave the dynamic memory data structure in an
in different heap layouts. For example, Microsoft C++ usdgconsistent state.
one heap for allocations of less than0 bytes, and a second The main concern in these systems is to limit the fragmen-
heap for all other allocations [16]. The Doug Lea algorithrifation problem by having large enough free blocks to serve
[10] manages small objects (smaller than 64 bytes) usingtexfyture allocation requests and to assure real-time reaeings.
size bins of a multiple o8 bytes each; for larger objects itMetrics that measure fragmentation and memory usage effi-
is a pure best-fit allocator and for very large requests €largciency in the context of embedded systems must be able to
than 128K) it relies on the system memory mapping facilitiggighlight those issues.

(if supported). Fragmentation and memory efficiency metrics must measure
In addition to the considerations above, we must inclugge efficient of memory use. On the other hand, performance
the requirements of our environment. In our case, whepeed metrics must be used to establish whether the system is
evaluating dynamic memory management systems we Mygje to satisfy the deadlines and time requirements imposed
consider the fact that we are analyzing embedded real-tifpgs ot pure speed that counts. In order to evaluate the
systems. Limited memory, no memory compaction, and Bgygmentation of the dynamic memory management system,

virtual memory are properties of this system. we have defined a few metrics in the following subsections.
Real time constraints, or the ability of the system to respec

time deadlines, are also one of the main concerns in the smallest-Biggest Block Metric (SBBM)
evaluation.

When serving a request, the main concern is to find a large
[1l. FRAGMENTATION AND MEMORY EFFICIENCY enough free block. Because of fragmentation, a large enough
Memory blocks are continuously allocated and deallocatége block may not be found even though the aggregate amount
from the dynamic memory, which leads to a phenomen®f free memory is higher than the request. In the case that a
called fragmentation [17], [18], [19]. Fragmentation isethfree block is not found, a failure arises.
situation when the memory is divided into used and unusedThe Smallest-Biggest Block Metric (SBBM) gives the
blocks. Because of high fragmentation the dynamic memoaynount of memory of a request that will always succeed in
management system may not able to perform allocations dhe scenario. If a larger amount than that given by the metric
subsequently may negatively influence the stability of tHe requested, the allocator could fail, see figure 2. Theimetr
whole system. For example, in figure 1, we have a case ofsaexpressed in Bytes.
failure, because of fragmentation, in allocatingl@KB MMS To extract the metric, the free list is analyzed during the
even though the total free memory2480KB entire simulation, and the biggest free block value in tee fr
In order to improve the cohesion of memory, adjacent frdist is recorded. At the end of the simulation, we select the
blocks can be coalesced, but if the areas are not contiguguzallest value among the biggest free blocks recorded.

All d M . . .
[Atocared Memory [7] Free Memory The cost metric can answer which one of the allocators is
able to cope with limited memory and therefore, is able to

Fi Block Metric -
1 I::>A'fjag;’c5izfi”§o . more efficiently use the memory. Different dynamic memory

management systems, with different algorithms, heap l@you

2 |40KB . 40KB . 80KB ||::>Free Block Metric - and parameters, have different cost metric values to run the
Average Size = 53.3 KB . . .
scenarios and we are interested in theapesbnes. The Cost
Fig. 3. Free Block metric Metric is expressed in Bytes. The cost metric is extracted by

using a program that shrinks the heap size to find the smallest
heap size needed to run the selected scenario. The CostMetri
B. Free Block Metric - Average Size (FBM-AS) can be normalized using the total memory alllocated for the

The Free Block Metric— Average Size (FBM-AS) is dynamic memory management. A high cost in this case will

the average size of free blocks in the free list during tq(;éorrespond a value close to 0 and for a cheap cost we will

simulation, see figure 3. The metric is expressed in Bytes. ave a value close to 1.
The metric highlights the fact that a heap with largef. Performances Metric (PM)

free blocks, on average, is more compact, and thereforg, IesA different approach is needed when measuring the perfor-

fra_lg_;?ented.. . din B h mance speed in a simulation environment. The performance
e metric Is expressed in Bytes to compare the aver ed cannot be measured using the execution time.

value with the largest request during the simulation of th In order to measure the speed of the different dynamic

scenario. An indication of a potential problem is shown Wh%emory management systems, the metric for performance
the average is below the amount of the largest blogk reqdnesg%eed is measured as the number of scans needed to access
since, in those cases, the r_equest may r_10t be satlsf!ed. the memory blocks.

However, to compare this fragmentation value with other 1o metrics described here measure performance using the
heap sizes, the metric can be normalized to the heap size ﬂﬂgnber of scans in the data structure needed to allocate and
a value betwegﬂ and1 can 'be returngd. In case bfwe have deallocate a memory block. Whenever an application reguest
a free heap with no aIIo_catlons and, in case of values closeatcrree block, the dynamic memory management system must
0 we have a heap that is very fragmented. find in due time a large enough free block. At the same time,
when a block is deallocated, it must be inserted in the right

lace in the list of the free blocks. For example, a size-@de

Internal fragmentation measures the memory wasted e list will require the insertion of a freed block in thejhi
Bytes) when a request is served by a larger free block. Thgsition in the list according to its size.
memory wasted is internal to the allocated block, therefitre Tne allocators used in the experiment have implemented the
is called internal fragmentation. free list using a linked list data structure. The performanc

Unfortunately it is not alWayS pOSSible to allocate the exagpeed is measured in th|s case as the number of scans in
size free block, as rounding up the requests, for exampige linked list. A different data structure can be used witho
contributes to the internal fragmentation. In some allocat invalidating the metric.
the free block is split and only the necessary chunk of The performance speed metrics have been used for memory
memory is allocated; however, leaving small blocks in thgocations and deallocations to measure the average and th
memory contributes to the increase of external fragmeatati \yorst case value. The worst case value is important consider
especially if the remaining chunk of free memory is less thaRg we are investigating real-time systems. In the allazati
the minimum block size allocable in the system. scenario are included all the scans needed to allocate the

As an example, segregated free lists do not contribute to thguest, which include the number of scans needed to insert a
external fragmentation, but they do contribute to the imdér remaining free chunk in the free list in case the free block is
fragmentation when a request is served by a larger chunkit.
free memory. The performance metrics introduced have the benefit of

. being CPU independent. The advantage is also that the values
D. Cost Metric (CM) are not influenced by the trace instrumentation techniged us

Cost plays an important role when a product must be sofdr extracting the data. Including trace instrumentation i
In embedded systems resources are limited and the usageéhefsource code adds performance overhead that is not easy
memory must be efficient. to calculate and in some cases can harm and corrupt the

The cost metric (CM) has been defined with the scope pérformance measurements [20], even though attempts have
quantifying the amount of memory needed to run significabeen made to limit the problem [21].
scenarios and subsequently establishing the amount of ngemo
to be placed in the handset. At the same time, the cost metric IV. THE CASE STUDY
measures the efficiency of the memory usage of differentThe scope of the experiment was to evaluate and to improve
memory management systems. the dynamic memory management system of Nokia handsets.

C. Internal Fragmentation (IF)

Scenario selection is the first step in the process and set# heap layout in the experiment was either made of a single
the focus of the analysis. Scenarios contain the execufionamntiguous block of memory or made with a preallocated set
one or more features. A feature is a user visible functionaf free lists plus a contiguous heap layout, as in figure 4.
requirement, e.g. FM radio. Evaluating the dynamic memoBegregated free lists (or the pool) are preallocated sdimef
management system means finding significant scenarioswiith fixed-size chunks of memory [24], and the configuration
terms of memory usage. However, features with strict readf the pool is a parameter of the simulation environment.lEma
time requirements must be included and analyzed. Rampsguests were served by the pool system. The bins were size-
peaks and plateaus were the patters described by Wilsoroetered and the requests were served in a FIFO (First In First
al. [19] and different patterns of data allocations can hentb Out) fashion.
executing the scenarios. The features list is the startoigtp The last phase in process is the analysis of the results
for selecting significant scenarios. However, in the sdenaobtained from the simulations. The best dynamic memory
selection process, interviews and brainstorming sessigtiis management system does not exist as an absolute concept.
developers and architects are fundamental. We must be able to evaluate the dynamic memory manage-

One handset with multimedia features was selected for theent according to the scenarios selected. A dynamic memory
experiment. The products in the Nokia handsets portfolinanagement might be able to serve large block of allocations
include handsets with basic functionalities (i.e. phon#, caefficiently but small block allocations are more importdrhie
SMS) and handsets with multimedia features (i.e. MMS, Videsystem is characterized by them predominantly. The prdsess
Recording, etc.). Since we wanted to check also the impadigrative and the previous phases can be reiterated moes tim
of multimedia features on the dynamic memory usage, tifeneeded.
multimedia mobile phone selected was representative ®r th In table Il are summarized the metrics extracted for the
study. scenario analyzed. The heap layouts in the simulation used

At the end of the scenario selection phase, significathie same amount of memory, with the difference that the heap
scenarios were selected using not only core set features plis the pool configuration had the memory split in two data
also optional multimedia features (since not all produetgeh structures.
multimedia features). The number of scenarios dependseon thin table Il are presented the performance speed figures
analysis scope and the time available for the analysis. At rigfollowing the metrics described in section 1lI-E.
balance must be found. A limited number of scenarios means

an analysis better focused; on the other hand, too a narrow V. RESULTS

scope prevents a comprehensive and sound analysis. Some @he scope of the experiment was the evaluation of the

the key performance scenarios selected were: dynamic memory management in the context of embedded
« Sending and Receiving MMS of 100 KB each real-time systems (Nokia handsets). In this experiment we
« Browsing the Web have simulated two heap layouts with the best-fit algorithm
« Downloading and playing a Java Midlet and presented the metrics extracted for one scenario, lsles ta
« Phone Start-Up II'and III.

By running the scenarios in the handset we extracted theBy analyzing the metrics, we concluded that the single heap
data of allocations and deallocations and we stored themlayout presented a more fragmented heap with many small
text log files. A summary of the data characteristics exéwhctblocks, as the Free Block Metric-Average Size showed. The
from running the scenarios from the handset are in table I.result was not a surprise: in the other heap layout simulated

Using data of memory allocations and deallocations wbe heap with segregated free lists, the small blocks are not
were able to analyze the data characteristics and requitsmeounted since segregated free lists do not contribute it
of the features selected in the scenarios. A simulatiorrenvi fragmentation. However, in addition to presenting a higher
ment was then used to test and evaluate different allocatiexternal fragmentation, the single heap layout presented a
strategies. The simulation environment was designed to teigher internal fragmentation.
different allocation strategies, parameters and datactsirel Conversely, the Smallest-Biggest Block metric (SBBM) is
for the heap. In order to be able the include additionthe reference point to decide if the allocator is good enough
algorithms and data structures, the simulator followed tfghe SBBM is the value to be compared with the biggest
Abstract Factoryand theBuilder design patterns [22]. The block size value allocated executing the scenario, seeatiie t
simulator gave as output the metrics described in Ill. A godd In the experiment this value was higher than the value
reference for the design of a simulator for dynamic memonf the biggest block size allocated during the simulation of
management systems is [23]. the scenarios, which showed that the problennof enough

We evaluated different heap layouts and algorithms varyimgemorywas not an issue.
configuration parameters such as memory size and configuThe higher normalized value (cheaper) of the Cost Metric
ration of the pool system. In this paper, as a demonstratibg the best-fit with a single heap shown that this layout was
example, we present the assessment of the the best-fit alglole to better optimize the usage of memory and run the
rithm with two heap layouts using as input the data of th&enario with a smaller memory footprint. The Cost Metric
scenarioSending and ReceivinrgVIMS of 100KB each was extracted by resizing only the heap and, in the heap plus

Scenarios Number of Obj alloc.| Average Obj Size| Biggest Block Size
in the simulation (Bytes) (Bytes)
Sending and Receiving MMS of 100 KB each 781563 92.67 96793
Downloading and playing 119932 83.87 46363
a Java Midlet

Browsing the Web 201744 70.90 38859
Phone Start-Up 26811 50.02 18400

TABLE |

DATA CHARACTERISTICS OF THE SCENARIOS

Heap

sorted bins

168 24B 32B | ... 5128 576B 640B +

chunks =

size

. Allocated Memory
|:| Free Memory
Fig. 4. Pool System plus Heap
Sending and Receiving Free Block Metrie- Smallest-Biggest Cost Metric | Internal Fragmentation
5 MMS of 100KB Average Size (Bytes) Block Metric (Bytes) | (normalized) | Average Value (Bytes)
heap_bf 16489.97 669876 0.51 16511.55
heap_pool b f 85265.69 327264 0.22 11299.17

TABLE Il
METRICS AND STATISTICS FORSENDING AND RECEIVING5 MMS SCENARIO

Performance Metrie Performance Metrie Performance Metrie Performance Metrie
5 MMS of 100KB | Worst Case Allocation| Average Scans Allocatior] Worst Case Deallocatior) Average Scans Deallocation
heap bf 192 69.12 198 56.31
heap_pool bf 30 9.89 16 6.20
TABLE Il

PERFORMANCESPEED, SENDING AND RECEIVING 5 MMS OoF 100KB SCENARIO

pool data structure, a large part of the memory was allocatiasportant in real-time systems. The free lists in the segjied)

by the pool. The metric gave insights on the boundary betwefae lists were managed using a FIFO strategy, and since
the heap and the pool system. By reducing the pool size, #lenost90% of the requests were small blocks, the advantages
Cost will decrease and therefore, the scenario will be aldéthe pool system were clearly demonstrated.

to run in a smaller memory footprint. On the otherhand, the

tradeoffs with the other metrics described must be consitler 1€ experiment showed that a different heap layout has
an important role in dynamic memory management. A heap

Looking at the performance speed of the two proposgidus segregated free lists was revealed to be a better solu-
dynamic memory managements in table Ill, we can see than, especially in situations where there are small paster
the best-fit with a single heap layout is extremely slow bf allocations. However, multimedia features demand large
compared with the heap with segregated free lists. The worsbntiguous blocks and the single heap layout showed the best
case allocation and deallocation performance was muctehighkialues for the metric SBBM. The increase in the progressfon o
in the best-fit single heap layout, and the worst-case vauethe largest block size allocated by multimedia featureshmn

seen in table I. Therefore, in the future, with the introduet memory requested in the simulated scenario is larger than th
of new multimedia features in the handsets, the considerati metric values, that request could lead to a failure durirgy th
made may be not valid anymore and a different dynamgystem life-time.

memory management system could be adviced. Trace instrumentation was used and the data analyzed

The conclusions above may seems obvious, however, onfpresented the run-time properties of the embeddedirsal-t
the assessment and the metrics extracted provided theneeidesystem studied. From the analysis emerged the importance
for the considerations made. The quantitative evaluatfdheo of the patterns of data allocations and deallocations of the
scenario illustrated the patterns of allocations of thetesys applications and the consequences to the memory management
investigated and the metrics gave an understanding of thestem. If many small blocks are allocated, a segregated fre
performance and the fragmentation. lists (pooling system) system is advised. On the other side,
the allocation of dynamic memory to a segregate free lists
data structure may negatively affect large blocks alloresti

In this paper we presented an approach to the investigatighich are served by a single heap data structure. A balance
of the problem of evaluating dynamic memory managemeintthe configuration of these data structures is needed.
systems. The scope of the research was not to show th&he allocator strategies are important but the heap layout
best algorithms for dynamic memory management but &md the configuration of the parameters, such as the definitio
introduce a process of evaluating different strategiesdai- of the pool system, also plays an important role.
time embedded systems. WE have presented a method andowever, the pooling system presents some challenges
defined its steps; in addition, we have proposed metrics &8 well. Configuring the pooling system in order to avoid
evaluate different approaches of measuring the efficiency dverflows is not an easy task. The configuration of the pool
terms of memory usage and speed performance. should optimize memory usage so no overflow happens, and

The analysis is based on the significance of the scenarias.the same time should have the minimum number of pre-
Therefore, significant scenarios for memory optimizatiarstn allocated blocks so free blocks are not left unused. Thet righ
be defined well. The data are extracted from scenarios raomber of chunks for each bin unfortunately does not exist
in the targeted system, and the data is used as input for theriori but defining the significant and challenging scenarios
simulation and subsequently for the analysis. Thereforis, i once again is very important here. The fragmentation of the
the job and primary responsibility of the performance eegin heap can then be checked using the simulation environment
to define the scenarios that determine the scope of the @halywith different configuration parameters.

The simulation planning phase ultimately refines the scopeA trade-off between memory usage efficiency and perfor-
of the analysis and defines the objectives. The metrics musince speed must be evaluated by the performance analyst.
be representative and highlight the properties importathé The dynamic memory management system must perform fast
scope of the analysis. The metrics that are defined herefdelgnough for the correct functioning of the system and must use
evaluate the characteristics of dynamic memory managemeargmory efficiently enough to be able to handle all the possibl
systems for memory efficiency and speed performance in theenarios a user will encounter.

context of real-time embedded systems. No compaction of

the memory is done in the system studied (and no garbage VII. CONCLUSION AND FUTURE WORK

collector system is used) and the metrics reflect the issuein this paper we have presented a case study of the
the best strategies are the ones that preserve a more comeeaiuation and the analysis of dynamic memory for real-time
memory with large free blocks; therefore, a less fragmentethbedded systems. In addition we have presented a set of
memory and théree Block Metricexpress clearly this scope.metrics to evaluated different dynamic memory management

The cost metric can be used to understand and quantfystems.
the amount of memory to be allocated to dynamic memory The approach is scenario-based and scenarios are used to
in a mobile terminal and to evaluate the dynamic memospecify the focus of the analysis. In the case study predente
management system efficiency. We wanted to be able reml traces of memory allocations from one Nokia handset
determine and estimate the amount of dynamic memory to Wwere used in the simulation environment. The simulation
placed in the handset. At the same time, memory efficiencyaavironment was built for the experiment and it was used to
also evaluated by this metric: a dynamic memory managementluate two dynamic memory management systems. In the
system that is able to work with less memory is more efficieanalysis phase, the different alternatives were companed a
and able to maintain a low level of memory fragmentation. evaluated.

The metrics for memory fragmentation in the experiment Our aim in this paper is not to present a definitive study on
are expressed in bytes; however, they can be normalizée algorithms and data structures to be used but to prdsent t
according to the size of the heap and then be used to expnegthod, the rationales and the tools for assessing embedded
fragmentation without regard of the heap size used. Bytes weeal-time systems in practice.
used because th&mallest-Biggest Block Metrignd theFree In future work we aim to extend the analysis of dynamic
Block Metric apply only if they can be compared with thememory management by studying in depth the improvements
largest block requested during the simulation. If the ggstat to be made in every single phase of the method. For example,

VI. DISCUSSION

potential enhancements and challenges exist in the idEmtifi[23] Chia-Tien Dan Lo, Witawas Srisa-an, and J. Morris Changhe

tion of key performance scenarios when embedded systems
are part of a software product family. At the same time,
different heap layouts can be introduced into the simutatig24]

and their performance can be measured against previgus)))
25] F. Feitelson, Dror and Michael Naaman. Self-tuningtsys. |IEEE

layouts. Moreover, configuration parameters are impodadt

we are studying the use of genetic algorithms [25], [26]] [B7 [26]
configure the pool system [28]. Dynamic memory management
is a complex problem and must be tackled by considerir[1297]
all the aspects and not just analyzing the algorithms usegzg]
This approach establishes a framework and a starting point

for future investigations for such an interesting and intg@otr

issue in computer science as dynamic memory management.

(1]
(2]
(3]

(4]
(5]

(6l

(7]
(8]
(9
(20]
[11]

[12]
[13]

[14]
[15]

[16]

(17]

(28]

[19]

[20]

[21]

[22]

REFERENCES

Donald E. Knuth. The Art of Computer Programming, Vol 1, Third
Edition. Addison Wesley, 1997.

B. Randell and C. J. Kuehner. Dynamic storage allocasgstems.
Communications of the ACM.1(5):297 — 306, May 1968.

Paul W. Jr. Purdom and Stephen M. Stigler. Statisticapprties of the
buddy system.Journal of the ACM (JACM)17(4):683 — 697, October
1970.

Kenneth C. Knowlton. A fast storage allocat@@ommunications of the
ACM, 8(10):623 — 624, October 1965.

J. M. Robson. An estimate of the store size necessary yoamic
storage allocation.Journal of the ACM (JACM)18(3):416-423, July
1971.

Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, BjarneeShsgaard,
and David Tarditi. Marmot: an optimizing compiler for jav@oftware:
Practice and Experien¢e30(3):199 — 232, March 2000.

L. Prechelt. An empirical comparison of seven programgrianguages.
IEEE Computer 33(10):23-29, October 2000.

Emery D. Berger and M. Hertz. Quantifying the performanc
of garbage collection vs. explicit memory managemer@OPSLA
http://iwww.cs.umass.edu/@émery/pubs/gcvsmalloc. @i52

Paul Wilson. Uniprocessor garbage collection techegunternational
Workshop on Memory Management, Lecture Notes in Compuigmcec
(637):1-42, November 1992.

Doug Lea. A
http://gee.cs.oswego.edu/dl/html/malloc.html
Jeffrey Ritcher.Advanced Windows, 3rd editioMicrosoft Press, 1997.
Apache Foundation. Apache web server: http://wwwcapaorg.
SGI. Standard template
http://www.sgi.com/tech/stl/allocators.html.

Free Software Foundation. Gecc home page: http://gecarg/.
Emery D. Berger and Kathryn S. Zorn, Benjamin G.and Mu&y.
Reconsidering custom memory allocatiorProceedings of the Con-
ference on Object-Oriented Programming: Systems, Laregjagnd
Applications (OOPSLA)November 2002.

Microsoft Corporation.Microsoft Windows NT 4.0 Online Documenta-
tion. Microsoft Corporation, Redmon, Washington, 1997.

Mark S. Johnstone and Paul R. Wilson. The memory fragatiem
problem: Solved?Proceedings of the 1st international symposium on
Memory ManagemenB4(3), October 1998.

John E. Shore. On the external storage fragmentati@uywed by
first-fit and best-fit allocation strategie€ommunications of the ACM
18(8):433 — 440, August 1975.

Paul R. Wilson, Mark S. Johnstone, Michael Neely, andiBdoles.
Dynamic storage allocation: A survey and critical revieRroc. Int.
Workshop on Memory Manageme#inross, Scotland, UK, September
1995.

D. Steward. Measuring execution time and real-timefquarance.
Embedded Systems Conference (E3®yil 2001.

E. Metz and R. Lencevicius. Efficient instrumentatiar performance

memory allocator.

library:

profiling. Proceedings of the ICSE Workshop on Dynamic Analysis,

(WODA) May 3-11 2003.
E. Gamma, R. Helm, R. Johnson, and J. Vlissid&esign Patterns
Addison Wesley, 1995.

design and analysis of a quantitative simulator for dynamemory
management. The Journal of Systems and Softwam2(3):443—-453,
August 2004.

James Noble and Charles WelBmall Memory Software: Patterns for
system with limited memaryAddison Wesley, 2001.

Software 6(12):52—60, March-April 1999.

H. Holland, J.Adaptation in Natural and Artificial SystemMIT Press,
1992.

E. Goldberg, D. Genetic Algorithms in Search, Optimization, and
Machine Learning Addison Wesley, 1989.

Christian Del Rosso. Reducing internal fragmentatiosegregated free
lists using genetic algorithm&roceedings of the 2nd International ACM
Workshop on Interdisciplinary Software Engineering Restgapages
143 — 150, 2006.

