
Performance Analysis Framework for Large
Software-Intensive Systems with a Message Passing

Paradigm

Christian Del Rosso
Nokia Research Center

Itamerenkatu 11-13, 00180
Helsinki, Finland

christian.del-rosso@nokia.com

ABSTRACT
The launch of new features for mobile phones is increasing
and the product life cycle symmetrically decreasing in du-
ration as higher levels of sophistication are reached. There-
fore, the optimization of resources is particularly important
in embedded systems where CPU power and memory space
are limited. In this context, performance engineers must
be able to predict and analyze the performance of the soft-
ware architecture in order to support its evolution and its
new requirements. In this paper I describe a framework for
the analysis of the performance of a software architecture
where the architectural elements communicate using mes-
sage based communication services. Using instrumentation
traces I have extracted the run-time events I considered sig-
nificant for the study. I have created a set of architectural
views to reconstruct the dynamic and the static views of the
architecture. Understanding the connections and the rela-
tionships between them guide the performance analyst to a
clear comprehension of how the architecture works and sub-
sequently how it can be optimized. The performance anal-
ysis framework described constitute an essential set. The
next challenge is to enhance the integration of the tools and
the synchronization of the views and to facilitate the entry
barrier to novice performance engineers.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Performance mea-
sures, product metrics; D.4.8 [Operating Systems]: Per-
formance—Measurements; D.2.4 [Software Engineering]:
Software/Program Verification—Model checking ; D.2.5 [Software
Engineering]: Testing and Debugging —Testing tools, Trac-
ing ; C.4 [Computer Systems Organization]: Perfor-
mance of Systems—Measurement techniques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

Keywords
Software performance engineering, dynamic analysis, per-
formance tuning of embedded systems

1. INTRODUCTION
To predict or measure the performance of large software

systems [6] is a challenging task. Software evolves and new
features are incorporated. Mobile phones are shifting from
simple devices used to communicate to complex software
systems with the ability to make phone calls plus all the
functionality of a handheld computer. New multimedia ap-
plications and high-speed data transmission protocols rep-
resent crucial features the mobile phone architecture must
support.

The work of the performance analyst is to highlight hot-
spots and bottlenecks in the architecture in order to op-
timize it. In some cases, where real-time constraints are
involved, the optimizations allow the architecture to evolve
and respect strict forthcoming requirements. In embedded
systems, limitations are even more severe in terms of CPU
power and memory space and the economy of resources is a
very important factor to consider when designing the archi-
tecture.

Different techniques exist to analyze a software system
and they can vary depending on the status in the life cycle
of the product. Modelling, simulation and prototyping can
be applied from the early stages in the software develop-
ment cycle. If the software has already been built, however,
profiling using instrumentation constitutes a viable option.
Additional source code (instrumentation code) is added to
the software source code to examine the run-time behavior
of the program. With the instrumentation in place different
events can be monitored and the focus of the analysis will
affect what traces will be enabled at run-time using some
flags i.e. at compile time or in header files. As in every
methodology, pros and cons of using instrumentation exist,
for example adding traces affects the behavior of the system,
and it requires access and knowledge of the source code [9],
[14], but a discussion of this topic is beyond the scope of
this paper.

Using instrumentation traces allows an off-line analysis:
the events raised during the scenarios are collected in text
files that will be analyzed using different analysis tools.

In this paper I will describe the performance analysis
framework needed to investigate the behavior of an architec-

885

2005 ACM Symposium on Applied Computing

ture using the message passing paradigm as an inter-process
communication mean.

During the work as performance engineers in Nokia, I have
developed a performance framework of tools that analyze the
dynamic and static behavior of the system that focus on the
CPU load. The framework creates different views that used
together, can help to understand how and where a system
can be tuned to improve the overall performance.

The framework developed constitute a starting point and
has been used in Nokia. The project is progressing and im-
provements can be made by adding new tools and improving
the existing ones.

2. PERFORMANCE TUNING OF EMBED-
DED SYSTEMS

Performance as a non-functional quality attribute is not
given the importance and the priority it deserves. In mobile
phone software, performance is important for several rea-
sons: real-time constraints must be respected, multimedia
applications are now considered an essential part of the core
software, memory requirements are increasing and power
consumption must be limited.

The reduction of the consumption of resources such as
CPU and memory must be carefully engineered, and strict
requirements must correspond to specific architectural choices
made at the architecture design phase. A correct design and
implementation will allow the architecture to evolve.

However, even if the system is already built we can still
enhance performance through a tuning process and a tuning
framework created for that purpose.

3. THE PERFORMANCE ANALYSIS FRAME-
WORK

The performance analysis framework allows different views
of the architecture to be built. The framework allows a bet-
ter understanding of the software system, and subsequently,
several optimizations will follow from the augmented knowl-
edge. In the sections below I will explain how I reconstructed
the views; after that I will describe how to take advantage
of the framework and explain the benefits and optimizations
that can be obtained.

4. RECONSTRUCTION OF THE ARCHITEC-
TURAL VIEWS

Data gathered from significant scenarios constitute the
input for the dynamic analysis tools, the source code is the
input for the static analysis tool, see figure 1. Collecting
data is the first step in the process and the performance
engineer must select a set of scenarios in cooperation with
the software architect. The process of tuning was previously
described in an experience paper [2]. I conform to the def-
initions of views given by the standard IEEE 1470 [6] and
by Paul Clements and et.al. [1].

4.1 CPU Load view
To calculate the time spent by each process in the sce-

nario I use the scheduling information contained in the log
file: scheduling of the processes and time stamps. A table
describing the percentage of the CPU time spent in each
time slice was created and different visualization tools were
used, e.g. an excel graph. The CPU load graph gives a

Figure 1: From the Data to the Views

high level of view of what is happening in the system. A
stacked area graph provides the contribution trends in the
load for each process over time. Peak load activities or high
frequency activities can be easily located in the graph. The
figure 2 shows an example of a CPU load graph where two
processes called A and B are involved.

4.2 Message Sequence Charts with Time Stamps
For the analysts, knowing which process contributes most

to the peak load is not enough. I want to have a finer view of
the system and know what the process is doing at that peak,
and essentially what part of the source code is running at
any given time. A MSC (message sequence chart) diagram
showing the messages with time stamps can help.

I have enhanced a visualization tool showing MSC [13]
with time stamps to provide information on each message
exchanged,. The information used for the visualization is all
contained in the log file and include the time stamp, sender,
receiver, plus optional information about the message type.
In figure 2 there is an example of MSC where A and B are
exchanging messages mi at the time ti.

4.3 Message Statistics View
A message itself is not a ”time-consuming” activity but

the information that it conveys is the source of the pro-
cessing. The message could be a request for a particular
resource, an acknowledgement or contain only data. The
statistics tool developed gathers the statistics of the CPU
time spent in processing different types of messages and can
be used to unfold interesting activities. The assumption is
that is possible to extract the begin and the end of the pro-
cessing time for each message from the traces. An End of
Message Processing trace instrumentation can be used to
clearly mark the end point.

In a pure message passing system the statistics uncover
the activities that have utilized more CPU time during the
simulation. In a hybrid system, in which function calls are
also used, the statistics are still valid and provide valuable
data to the analyst.

886

4.4 Run-Time Coupling View
In a multi-tasking system, the processor must switch be-

tween different processes all the time. Every process has a
private address space to allow multiple instances of the same
program to run. If a message is sent between different pro-
cesses, the process address space boundary must be crossed
and a context switch must happen. Inter process communi-
cation has some overhead, and in case the communication
involves a context switch, more processing time is implied.

I have used the number of messages exchanged between
different processes as a metric of coupling even though dif-
ferent definitions of coupling exist, [3]. Highly coupled pro-
cesses have an high rank arc in a directed weighted graph.

The coupling tool that was developed measures the num-
ber of messages exchanged between every single component
in the system. The figure 2 show an example of the outcome
when three processes, A, B and C are involved.

To limit context switches, highly coupled processes could
be merged. This is an advisory and can aid in a decision to
merge; other variables must be taken into account such as
location of the development teams and architecture modu-
larity.

At the same time, the coupling graph gives the network
topology of the system and software anti-patterns can be
discovered [4], for example the God Class anti-pattern de-
scribed in [14], and found in an industrial experience report
[2].

4.5 Static Analysis view
Dynamic analysis tools permit the visualization and find-

ing of anomalous activities but, the more the analysis is
refined, the more we are going to inspect lower level details
that only the source code can express.

A static analysis tool is indeed needed and can aid in
various circumstances. Dynamic analysis tools can reveal a
high CPU load for some components in the running scenario
but the code provides the final explanation for the load, e.g.
a for loop.

In addition, program comprehension cannot be achieved
with the sole use of dynamic analysis tools and tuning can-
not be achieved without a clear comprehension of the soft-
ware inspected.

In this task I have used the reverse engineering tools de-
veloped by Claudio Riva and described in [12].

4.6 Using the Different Views Together
The CPU load graph and the message statistics views are

the first views to begin the analysis with, then we can freely
pass from one view to another.

The processes with the highest CPU load, the messages
consuming most of the CPU time and the processes highly
coupled are the first to be scrutinized and optimized.

As an example of interaction of the views, we can study
from figure 2 the dependencies between the views following
the behavior of the processes A and B and message type m1

at time t1. Processes A and B consume the most CPU time.
At the peak, the MSC (message sequence chart view) reveals
the reasons for the load, the m1 at time t1. The statistics
view provides a more detailed information of the message
m1. The reverse engineering made by the static analysis
tools finds the part of the code involved, the part of the
source code where optimizations are possible and important.
Finally, the coupling between processes A and B shows their

Figure 2: Architectural Views Reconstructed Using
the Tools

tight connection and clarifies comprehension of system the
run-time.

I discovered an architecture conformance problem during
the industrial experience. The anomaly was evident in the
message statistics view, where a specific message was con-
suming a large amount of CPU time. Then, the CPU load
view showed the high load of the process involved. The
break of the architecture rule was discovered using the cou-
pling view, which showed that that connection was not al-
lowed. The static analysis view permitted the location of
the module and the source code.

Sometimes not all the views are used. I discovered a God
Class antipattern [14] with the coupling view. A God Class
is defined in this context as a large complex process (the
God Class) that a large group of simple processes need to
access and to communicate with. As a result, the bottleneck
degrades the performance.

4.7 Benefits and Optimizations
There are several optimizations permitted by the analysis

framework which can span different levels of abstraction. At
the architecture design level, performance anti-patterns can
be highlighted and the architecture subsequently refactored,
[5], [4]. The coupling between the processes shows run-time
dependencies and provides feedback for improvements to the
architecture’s structure. The improvements made with this
view concern the architecture evolution and performance.
A system highly coupled is a clear sign of bad architecture
design, i.e. it is very difficult to add and subtract compo-
nents; at the same time, performance is negatively affected
e.g. God Class antipattern.

However, even an excellent design of the architecture does
not assure that the performance objectives are achieved. Im-
plementation algorithms are still very important. Message
statistics and MSC might highlight bottlenecks in the han-
dling of messages. Then the static analysis view will find
the module and the part of the source code to improve.

A strict cooperation between static analysis and dynamic
analysis tools is strongly advised. The dynamic analysis

887

tools reconstruct the run-time view, while the static anal-
ysis tools complement them, aiming at a greater program
comprehension.

In addition, the dynamic and the static analysis can reveal
inconsistencies between the architecture as implemented and
the architecture as designed (architecture check and confor-
mance). This statement has also been proved though my
industrial experience. With the reconstruction of the views
using the performance framework developed I discovered a
pattern where the messages were conforming to a previous
design decision but not conforming to the new architecture
design [2].

The target of optimizations is the heavy hitters. Not much
benefit is found in improving an activity that consumes a
small amount of resources. In additions, the benefit of the
improvement has to be balanced with the amount of work
and resources needed to make the change. An improvement
that drastically changes the architecture must have a valid
reason, i.e. be able to respect the real-time constraints or
standards. The job of the performance engineer also consists
of the ability to find the trade-offs between performance op-
timizations and gain.

4.8 Considerations on the Performance Frame-
work

The framework consists of different views. At the begin-
ning of my work, only the CPU load view was used in the
development environment. I conceived the other views to
satisfy the need for a comprehensive study of the message
passing system and the overhead created by its infrastruc-
ture. Even if the CPU load view is important for the lo-
cation of hot spots and heavy hitters, it does not provide
the answer to important questions on the root causes of the
problem i.e. what it is happening at the specific time in the
specific peak load.

The views considered are the most important from my
point of view for the performance tuning of the architecture
analyzed. The CPU load view and the message statistics
view were the first to be used, however, full comprehension
of the system could only be achieved using all the views
together.

The performance framework does not constitute the defini-
tive answer needed to tune a software architecture based on
a message passing mechanism but in my experience it was
an important instrument to tackle architecture performance.
With this approach, the main bottlenecks can be found, in
addition, I was able to extract a scenario and create the
views in few hours.

However, to tune a software system, more aspects could
be targeted and enhanced narrowing the scope of the tun-
ing with specific analysis. The study of the scheduling algo-
rithms and policies are still very important and Rate Mono-
tonic Analysis is one of the methods used [7]. To improve the
memory consumption and reduce the fragmentation, simu-
lations of different allocation algorithms and strategies can
be run and analyzed [15].

5. FUTURE WORK
Below is a list of optimizations and suggestions I believe

important for the improvement of the current work:

• Visualization tools to better understand the structure
of the software are needed. At the moment I am ex-

ploring the use of self-organizing maps to better vi-
sualize the coupling between the components in the
system [8].

• Both static and dynamic analysis tools must be used
when tuning the architecture. However, more synchro-
nization of the views is needed in order to have a better
and clear understanding of the dependencies between
the two views. An interesting work of synchronization
between message sequence charts and static views can
be found in [13].

• The fact that the analysis tools are difficult to port
to another environment or system constitute a barrier
and a challenge to be faced.

• During the development of the analysis environment I
found the importance of the use of scripting languages
for prototyping and rapid development. The fact that
regular expressions were extensively used also support
the use of scripting languages [10]. In this case I used
Python [11].

• The performance analysis tools constitute a useful set
but new tools and improvements are necessary to au-
tomatize the process of performance tuning, to in-
crease the level of details to be extracted and to fa-
cilitate the learning curve for novice performance en-
gineers.

• I have tuned the analysis for a message passing frame-
work. An interesting research area would be how to
enhance the tools and the analysis for similar systems
such as frameworks that use messages and function
calls.

6. CONCLUSION
In this paper I have described a performance analysis en-

vironment for investigating and tuning the performance of a
message passing system. The analysis tools allow the recon-
struction of different views of the architecture. The different
views can give a better understanding of large software sys-
tems and suggest improvements to the architecture structure
without excluding code level details. Good results have been
obtained in the realm of industrial experience.

The future work will concentrate on creating a better and
integrated performance analysis framework with views syn-
chronization and applying the knowledge acquired to differ-
ent systems.

7. REFERENCES
[1] P. Clements, F. Bachmann, L. Bass, D. Garlan,

J. Ivers, R. Little, R. Nord, and J. Stafford.
Documenting Software Architectures: Views and
Beyond. Addison-Wesley, 2002.

[2] C. Del Rosso. The process of and the lessons learned
from performance tuning of a product family software
architecture for mobile phones. Proceedings of the 8th
European Conference on Software Maintenance and
Reengineering, Tampere, Finland, March 24-26 2004.

[3] T. Demarco. Structured Analysis and System
Specification. Prentice-Hall, Yourdon Press Computing
Series, 1978.

888

[4] M. Fowler. Refactoring, improving the Design of the
existing code. Addison Wesley, 1999.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, 1995.

[6] IEEE 2000. Recommended practice for architectural
description of software-intensive systems. IEEE
Standard No. 1471-2000, http://shop.ieee.org/store/.

[7] M. Klein, T. Ralya, B. Pollak, R. Obenza, and
M. Gonzales Harbour. A Practitioners Handbook for
Real-Time Analisys. Kluwer Academic, 1993.

[8] T. Kohonen. Self-Organizing Maps. Springer Verlag;
3rd edition,
http://www.cis.hut.fi/research/som-research/, 2000.

[9] E. Metz and R. Lencevicius. Efficient instrumentation
for performance profiling. Proceedings of the ICSE
Workshop on Dynamic Analysis, (WODA), May 3-11
2003.

[10] J. K. Ousterhout. Scripting: Higher level
programming for the 21st century. Computer,
31(3):23–30, March 1998.

[11] Python. http://www.python.org.

[12] C. Riva. Reverse architecting: an industrial experience
report. Proceeding of the 7th Working Conference on
Reverse Engineering (WCRE2000), (Brisbane,
Australia), November 23-25 2000.

[13] C. Riva and J. Vidal, Rodriguez. Combining static
and dynamic views for architecture reconstruction.
Proceedings of the Sixth European Conference on
Software Maintenance and Reengineering, pages
47–55, March 11-13 2002.

[14] C. U. Smith and L. G. Williams. Performance
Solutions. Addison Wesley, 1995.

[15] P. R. Wilson, M. S. Johnstone, M. Neely, and
D. Boles. Dynamic strage allocation: A survey and
critical review. Proc. Int. Workshop on Memory
Management, Kinross, Scotland, UK, September 1995.

889

