
Software performance tuning of software

product family architectures: two case studies

in the real-time embedded systems domain

Christian Del Rosso

Nokia Research Center
P.O. Box 407 FIN-00045

NOKIA GROUP (Finland)
Phone: +358718036604
Fax: +358718036856

Abstract

Software performance is an important non-functional quality attribute and soft-
ware performance evaluation is an essential activity in the software development
process. Especially in embedded real-time systems, software design and evaluation
are driven by the needs to optimize the limited resources, to respect time deadlines
and, at the same time, to produce the best experience for end-users. Software prod-
uct family architectures add additional requirements to the evaluation process. In
this case, the evaluation includes the analysis of the optimizations and tradeoffs for
the whole products in the family. Performance evaluation of software product fam-
ily architectures requires knowledge and a clear understanding of different domains:
software architecture assessments, software performance and software product fam-
ily architecture. We have used a scenario-driven approach to evaluate performance
and dynamic memory management efficiency in one Nokia software product family
architecture. In this paper we present two case studies. Furthermore, we discuss the
implications and tradeoffs of software performance against evolvability and main-
tenability in software product family architectures.

Key words: Software Performance, Software Product Family, Software
Architecture Assessments, Embedded Real-Time Systems, Dynamic Memory
Management.

Email address: christian.del-rosso@nokia.com (Christian Del Rosso).

Preprint submitted to Elsevier Science 12 July 2007

1 Introduction

Software performance is an important non-functional quality attribute of a
software system. Performance and memory efficiency influence the cost, the
quality and the success of a product, Ran and Lencevicius (2003). Embedded
real-time systems add more requirements to software performance with defined
time deadlines and constraints in terms of CPU power, memory consumption
and power management. The limited resources require a carfull design. Design
choices must be targeted to limited resources and real-time deadlines. The lack
of performance means time deadlines not respected and failures in achieving
a successful user experience.

The ideal situation for addressing software performance is during the design
stage. Performance models are created to evaluate the impact of the expected
workload. Consequently specific design choices are reflected in the software
architecture. Unfortunately, performance is usually not considered enough at
design stage and, only later, in the development stage, attempts are made to
recover weaknesses and software design flaws. The reasons for not considering
performance from the beginning vary from tight deadlines in the software de-
velopment to a potential ”we will fix it later” attitude. However, this strategy
includes potential problems in terms of cost and development time needed to
re-architect the software architecture.

An additional dimension is introduced when performance is to be evaluated
and improved for a software product family architecture. A software product
family architecture is an architecture for a set of related products. Products in
a family share a common reference architecture and part of the code. There-
fore, improving the performance of a software product family means enhancing
the performance of all the products in the family, or a few of them, while not
affecting the performance of the others negatively.

In this paper we first present the method and then two case studies of per-
formance tuning of the S40 Nokia software product family architecture. The
S40 is one of the main Nokia’s software product family architectures. We
have adapted the Software Performance Engineering method (SPE), Smith
and Williams (1995), to the software product family domain. The method is
scenario-based and it can be used to evaluate and assess the performance of
a software product family architecture during the whole software life cycle.
The method is not tied to a specific modeling technique, and depending on
the stage in the software life cycle, simulation, prototyping and measurement
techniques can be applied.

The first case study focuses the analysis on the performance of the Nokia S40
core software architecture. The second case study describes the analysis of

2

dynamic memory management systems in the context of the Nokia S40. In
the case studies we have reported our main findings and reasoned on how to
address performance tuning of software product family architectures. We have
presented our results accurately; however, for confidentiality reasons, detailed
description of the software architecture assessed had to be excluded from this
paper.

The structure of the paper is as follows. Section 2 gives an introduction on the
basic concepts of software product family architectures. The problem state-
ment and challenges of performance tuning software product family architec-
tures are described in section 3. Section 4 describes the method and its various
steps. Section 5 presents an introduction to the case studies, the S40 software
product family and on the background of our work. The first case study and
its results are in sections 6 and 7. Section 8 introduces the domain of dynamic
memory management in the context of embedded real-time systems, this in-
troduction is related to the second case study. The second case study and
its results are in sections 9 and 10. The metrics used in case study two are
described in appendix A. The related work is in section 12, and the discussion
on performance tuning of software product family architectures is on section
11. The conclusion and future work are in section 13.

2 Software Product Family Architecture (SPF)

A software product family architecture is an architecture for a set of related
products. The products in the family share a common asset, part of the code
and have a common reference architecture, Jazayeri et al. (2000); Bosch (2000);
Clements and Northrop (2002); Gomaa (2004). The main benefits and advan-
tages of software product family architectures are an improved software quality
and the decrease of time-to-market of the products. In a competitive market
with the trend of shortening the software life cycle of products, software prod-
uct family architectures represent a key software asset in a company portfolio.

A software product family shares common assets called commonalities, how-
ever, the differentiation of the products come from an architecture that allows
the extension and the instantiation of different products from the same core
asset. Different products will have a different set of features and therefore they
will be able to differentiate themselves in the market.

We define feature in our context as a user visible functional requirement. A
feature in a mobile phone can be web browsing or FM radio. Through feature
modeling, the architecture supports the variability of products. A variability
represents the control point in the architecture where the change and extension
can be made with the degree of variation allowed.

3

A classification of feature can be described using UML (Unified Modeling Lan-
guage), Rumbaugh et al. (2005). UML has not specifically addressed feature
modeling but the conceptual definition of feature can be described using UML
stereotypes. The basic conceptual classification of feature using UML stereo-
types is in figure 1. A feature can be core or optional. A core feature is a feature
which every product in the family has. A core feature is depicted in UML with
the stereotype <<core feature>> followed by the feature name. An optional
feature is a feature provided only by some of the members of the product
family. An optional feature is depicted with the UML stereotype <<optional
feature>> followed by the feature name. Core and optional features can be
further specified as immutable and parametrized. Immutable features are in-
stantiated in the products without further changes. An immutable feature
can be a core or an optional feature and is depicted with the UML stereotype
as <<immutable-core feature>> or as <<immutable-optional feature>> fol-
lowed by the feature name. A parametrized feature, instead, defines a feature
which is instantiated using one or more parameters whose values are defined at
system configuration time. The specifications of the parameters is done using
UML tags. A parametrized feature is depicted with the UML stereotype as
<<parametrized-core feature>> or as <<parametrized-optional feature>>

followed by the feature name and the list of tags with their assigned values. For
example, <<parametrized-optional feature>> mediaplayer type=high−end.

<<feature>>

<<core feature>>
 <<optional feature>>

<<parameterized-

optional feature>>

<<parameterized-

core feature>>

<<immutable-core

feature>>

<<immutable-

optional feature>>

Fig. 1. Feature characterization in UML

The study of feature analysis and modeling is called domain engineering and
several publications explore and present methods to model and analyze fea-
tures in a software product family, Van Gurp et al. (2001); Svahnberg et al.
(2005). Feature modeling has been introduced in the FODA method (Feature-
Oriented Domain Analysis), Kang et al. (1990), but other feature model-
ing methods include FORM (Feature-Oriented Reuse Method with Domain-
Specific Reference Architectures), Kang et al. (1998), and the work by Griss
et al. (1998).

Modeling features includes the understanding of their dependencies and the
creation of feature dependency graphs where links establish dependency rela-
tions at the feature level. From the feature model it is possible to link features
to the architecture design and to the implementation. Figure 2 represents,

4

conceptually, the dependency relationships among the different models in a
UML diagram.

Feature

Architectural
component

Source code
component

1..*

1..*

1..* 1..*

1..*

1..*

Fig. 2. Dependency between features, architecture design and source code level

The concept represented by figure 2 will be important in the following sec-
tions when we will refer to this mapping for the scenario selection step and for
the optimizations. The traceability through the three different levels makes
it possible to understand the impact of changes and improvements from the
user scenarios (containing features) to the architectural components and to
actual source code modules in the software products and vice versa. Links
at each level of abstraction must be consistent in all the other levels. A link
between features in the feature dependency model implies an existing link
at architectural level between the components that implement those features.
Subsequently, dependencies in the architectural level must be consistent with
dependencies in the source code level. Software re-engineering, static and dy-
namic architecture analysis study these models for architecture consistency
checks and analysis, Riva (2004); Del Rosso (2005b).

3 Problem Statement

Software evaluation for a software product family means the inclusion of the
whole products of the family in the process. Performance improvements can
be targeted to the whole software product family, to a specific product or
to a subset of the products in the family, e.g. high-end products or low-end
products. In order to accomplish this task, a clear understanding of the dif-
ferent characteristics of the products in the family is needed and a detailed
evaluation of the tradeoffs is necessary.

The quality of a software product is defined by a set of non-functional quality
attributes such as security, performance, evolvability, maintenability, etc. The
ability to achieve the desired targets is done by a careful design and analy-
sis of the tradeoffs of a software product. Non-functional quality attributes
do not live in isolation and may have conflicting requirements and demand

5

different design decisions. For example, security and reliability conflict with
performance.

An additional complexity in the evaluation process is introduced when the
analysis of the tradeoffs not only includes the non-functional quality attributes
of a product but of a family of products. Conflicts in quality attributes in a
family appear when different products have different targets and markets,
what in the marketing jargon is called segmentation. For example, multimedia
devices and low-cost devices have conflicting requirements between perfor-
mance and the cost of the products.

Enhancements and optimizations can involve refactoring the software archi-
tecture of the product or refactoring the reference architecture of the software
product family. The software architect performing the evaluation must not
only have a good understanding of software performance but also have an
expertise in domain analysis and software product family architectures.

Currently, assessment and evaluation methods have focused on single software
systems and considered and analyzed the improvements on their software ar-
chitecture. On the other side, software product family research has not stressed
the analysis on the tradeoffs of non-functional quality attributes, especially
performance. We aim in this paper to contribute to the research literature
by presenting case studies of the analysis of software performance in software
product family architectures in the industrial realm.

4 Software Performance tuning for SPF

The software performance tuning method for software product family archi-
tectures presented in this paper is scenario-based. Key performance scenarios
are selected and analyzed during the analysis. Scenarios contain the execution
of one of more features of the products. We define feature in this paper as a
user visible characteristic of the system, for example, video call. The steps of
the software performance method are represented in the activity diagram in
figure 3. The process is iterative and the analysis can be further refined and
improved by re-running the needed steps.

Our approach follows the SPE method, Smith and Williams (1995), and the
activity diagram and the steps described below reflect this fact. However, we
had to adapt the SPE method to the software product family domain. In this
context, we had to revise and adapt the key performance selection step, step
1 in the diagram 3 and section 4.1 in the text, to take into account domain
and feature analysis. Additionally, we added the analysis and tradeoffs for the
software product family, step 5 in the diagram 3 and section 4.5 in the text. In

6

the software product family domain the analysis and tradeoffs have to consider
a set of products rather than a single product.

Key Performance
Scenarios Selection

Establish Performance Objectives/
Prepare Simulation Plans

Conduct Simulations/
Perform Performance Models

Evaluate Simulation Results/
Evaluate Performance Models

Analysis and Tradeoffs
for the Software Product Family

Analysize at which step the
improvements must be made

[satisfied]

[Not satisfied]

[step 5]

[step 4]

[step 3]

[step 2]

[step 1]

Fig. 3. Software Performance Method for SPF steps

4.1 Key Performance Scenarios Selection

The first step in the process is the selection of key performance scenarios.
Scenarios define the focus of the analysis and the features included in the
scenarios are considered for improvement. Key performance scenarios include

7

features that are frequently used by the end-user, thus, optimizations will have
a direct impact on the user experience. Features that are resources intensive
and are particularly demanding in terms of CPU power and memory usage
must be considered even if they are rarely used. Considering real-time systems,
features with real-time requirements must be considered. The importance of
the features also come from the customer and marketing department within a
company.

In a product family architecture, scenarios can cover features instantiated in all
the products of the family, the so called core features, or can include optional
features targeting a particular set of products in the family. By selecting core
features, all products will be directly involved in the analysis. However, new
features are introduced all the time during the software life cycle and we may
want to focus on newer features, that are usually particularly performance and
resources demanding, and explore their impact on the software architecture.
In this case, the task of the assessment will be to optimize one particular
product or a subset of the products in the family.

In many cases, performance demanding features are included only in some
products (specialized products with some particular features) and later these
features are included and backported to other products in the family. For
example, this is the case when new features are only instantiated in high-end
phones and then introduced in low-end phones becoming commodities.

Product 3 Core
Features

Product 1

Product 2

F a

F bDepends-on

Scenario 1
Non-core
features,
not shared
by other
products

Scenario 2
Core-features,
shared by
all products in
the family

Scenario 3
Features,
shared by
a set of
products in
the family

Fig. 4. Scenario selection and features

The blocks in the figure 4 represent products and each product contains a set
of features. From the basic set theory we have that all the products in the
family share the core features and, in addition, products can share a subset of
features. Referring to figure 4:

• Product 1 ⊂ Product 2
• Product 3 ∩ Product 2 ∩ Product 1 = Core Features

8

Figure 4 gives a graphic representation of the dependencies between scenarios
and software products. From figure 4 we have scenarios with:

• only core features
• features shared with a set of other products
• features not shared with other products

Features have dependencies which must be identified and understood in order
to make the necessary improvements. Methods such as FODA, Kang et al.
(1990), aim at feature dependency and analysis, the so-called domain analysis,
see section 2. Domain analysis is not in the scope of this paper. However,
subsection 4.5 and section 11 discuss the implications of feature dependencies
for software performance tuning.

The scenario selection process is iterative and scenarios are ranked, prioritized
and selected by the stakeholders according to the technical and business im-
portance of the features. The stakeholders are the people that have a stake and
contribute to the evolution of the architecture: the software product family
architect, architects, software developers, etc. At the end of the process, the
scenarios selected must reflect the focus of the analysis and they must be in
a manageable number, a number that depends on the time for the evaluation
and on the analysis’scope.

4.2 Establish Performance Objectives and Prepare Simulations Plan

In this second step we define the performance objectives and prepare the sim-
ulation plans. A set of metrics and objectives must be listed in order to com-
pare the results obtained with the objectives established. This step includes
the definition of the metrics, the variables to measure and the definition of
the particular analysis technique to be used in the following step.

4.3 Conduct Simulations and Perform Performance Models

The third step in the process includes performance modeling, simulations or
software performance measurements. Members of the product family are used
as representatives for the study and, modelling and simulations are based on
their performance and workload or, expected one, if the software is on early
development stage.

Depending on the software stage in the life cycle, different techniques can be
used. Simulations, modeling and prototyping can be used in the early stages.
For studying software performance in real-time systems RMA (Rate Mono-

9

tonic Analysis), Liu and Layland (1973), queuing theory and Markov mod-
els can be used. A good reference on performance analysis and modeling is
the book by Jain (1990). In later stages of development, measurement tech-
niques can be applied to the software systems. Trace instrumentation, Metz
and Lencevicius (2003); Metz et al. (2005); Del Rosso (2004), is a measure-
ment technique where additional code is included in the source code and traces
from the running system are extracted to trace the values of the needed vari-
ables. With data collected from the measurements, the dynamic view of the
architecture can be reconstructed and the performance measured, Del Rosso
(2005b).

4.4 Evaluate Simulation Results and Performance Models

The fourth step in the process is the evaluation of the simulations and the
performance models. In this phase, we compare the results obtained in the
previous step with the objectives established. In addition, the hotspots and
the bottlenecks found in the architecture are analyzed and design decisions
are taken.

At architectural level we look for software anti-patterns, Smith and Williams
(1995); Williams and Smith (2000). Anti-patterns document common mistakes
found in software design and anti-patterns literature not only documents bad
architecture design choices but provides ways to re-architect the system while
preserving the semantics. Software patterns can be applied to the software
design, Buschmann et al. (1996); Gamma et al. (1995), in the problematic
areas. When a more extensive re-architecting activity is needed to cover the
entire software architecture and not only a part of it, we apply architectural
styles. Examples of architectural styles are the pipe and filter and the layered
style, Shaw and Garlan (1996).

Improvements can be done at different levels of abstraction. Optimizations at
the design level are very important, without a proper architecture a software
cannot achieve its objectives. However, while optimizations at design level are
still very important, optimizations at the source code level play an important
role. Refactoring can be done at the code level, Fowler (1999). In addition,
algorithms and data structures must be investigated. A quick sort is faster
than a bubble sort and a hash table gives a faster access then a sequential
access to data structures.

Evaluating software performance implies a thorough analysis of the tradeoffs.
Quality attributes may have conflicting requirements and tradeoffs are neces-
sary. For example, security and fault tolerance come at the expenses of per-
formance. At the end, improvements must be evaluated against their impact

10

on the software architecture.

4.5 Analysis and Tradeoffs for the Software Product Family

The fifth step in the process is the evaluation of the performance models and
the analysis of the tradeoffs for the software product family architecture.

Once the bottlenecks and hotspots are found, the proposed solution must be
evaluated for its impact on the software product family. The impact analysis,
Gomaa (2004), is the evaluation of the impact of the proposed solution on the
products of the family following the dependencies at the feature, architectural
and source code level.

Even if different products do not share common features (except for the core
features), features may have a dependency relation. An example is represented
in figure 4 where product 3 and product 2 have a dependency between fea-
tures Fa and Fb. The feature dependency relation implies a dependency at the
architectural level and consequently at the source code level. Dependency rela-
tionships must be consistent along all the three layers of abstraction presented
in figure 2.

An example of features dependency from the mobile phones domain is rep-
resented by the Music Player and the Playing Ring Tones features. The two
features are distinct. The first feature is the music player application while
the second feature plays the appropriate ring tone in case of various events
such as an incoming phone call or an incoming SMS. A mobile phone has
the Playing Ring Tones feature since it is a core feature, but might not have
the Music Player feature which allows to play music files in different formats,
e.g. windows media files, MP3, AAC. However, if we want the Playing Ring
Tones feature to play files with codecs supported by the music player and not
only by the ring tone codecs, then a dependency relationship is created by the
shared codecs modules. Once this architectural decision is made, changes in
the codecs modules will affect both features. A discussion on managing fea-
tures dependency, problems and solutions in mobile software is discussed by
Maccari and Heie (2005).

We must notice that the inclusion of the same feature by more products does
not necessarily imply that the same feature is instantiated using the same
implementation. Parametrized features, as described in fig 1, are features in-
stantiated with different parameters including, eventually, different implemen-
tations.

With the understanding of the impact of the improvements on the product
family architecture we must include the analysis of the tradeoffs. While in a

11

single product architecture the analysis of the tradeoffs is between quality at-
tributes in the product, by adding the product family dimension, the analysis
of the tradeoffs is augmented with the analysis of the tradeoffs between quality
attributes, sometimes with conflicting requirements among the products in the
family. Conflicting quality attribute requirements, in a single product archi-
tecture, arise when the tradeoffs are between different non-functional quality
attributes such as security and performance. In a software product family,
we may additionally have conflicting requirements for the same quality at-
tributes. For example, improving the performance in low-end products may
imply a different architecture than the one needed in high-end products.

4.6 Iteration

The performance assessment process is iterative and improvements to the out-
come can be made in every single step of the process. The scenario selection
step can be used to improve the focus of the analysis and scenarios can be
redefined and refined. Additional stakeholders can be included in the process.
Performance objectives and simulation plans may be revised considering the
outcome of previous iterations. Furthermore, we may want to set more chal-
lenging objectives and investigate other variables in the system. Additional
simulations and performance models provide a deeper investigation of the sys-
tem. In addition, alternative models may provide a different perspective for the
solution of the problem. The results of new simulations and performance mod-
els must be analyzed and considered. The new findings should be compared
with the previous iterations. Different architecture solutions may be investi-
gated. The impact analysis will then consider the performance, implications
and tradeoffs of the alternative solutions.

The decision to iterate is commonly done at the end of the process. Only at
the end of the process we are able to estimate the benefits and to quantify the
outcome of the analysis in terms of performance gained against the tradeoffs.
However, nothing prevents reiterations in the early phases of the process. The
only limitation is that the path must follow the directions of the activity dia-
gram. The conclusion of the assessment must produce a quantifiable evidence
of the benefits, a clear description of the tradeoffs and the implications of the
solution.

5 Background of our work

Within Nokia we have three different mobile software platform architectures,
the Series 30, Series 40 and Series 60. The case studies in this paper concerned

12

the Nokia’s Series 40 (S40) mobile terminals software architecture. Series 40
is a Nokia proprietary software platform that has been in use for over 15
years. It has been mainly deployed in low and middle-range products, as it
combines ease of use with low memory consumption and lightweight processor
requirements, both key factors in the cost of manufacturing a mobile terminal.

The Series 40 architecture was created in the mid 1990s when mobile phones
were not the same devices we see today. A mobile phone at that time had basic
features such as voice and messaging. Essentially, most of today’s applications
were not supported and in some cases not even conceivable at the time the
architecture was designed. Examples of such requirements are: color displays,
enhanced phonebook, multimedia (camera, messaging, gallery, ring tones) and
third-generation (high-bandwidth) protocols.

Furthermore, advances from component-based research and software engineer-
ing together with new market demands brough the need to expand the scope
of our software. From a basic software architecture where mobile software
was created, the organization moved to a software product family platform.
The new software platform architecture had to provide consumers with more
choices and serve several user segments. The architecture, and the organi-
zation, consequently, had to be expanded and adapted to a product family
architecture, see section 2.

From a handful mobile phone models delivered in the first few years of the
early 90’, we now launch more than 50 mobile phones a year, in different
geographical locations and serving several user segments. One of the biggest
achievement of the Series 40 mobile phone platform is that it has been able to
stretch and incorporate new requirements for over 15 years and still continues
to be the Nokia’s most profitable platform.

The development of the Series 40 software is geographically distributed over
seven sites, located in three continents and separated by several time zones.
Cultural, language, time-zone differences have contributed to the challenges
of its software development. The S40 software has been development in dis-
tributed fashion simultaneously and the documentation is not an exception.
The ability of the development teams and a central architecture management
board ensured a sort of controlled way to manage software evolution and soft-
ware architecture documentation.

During the years, new requirements have been incorporated in the S40 software
product family architecture and each of the requirements have had an impact
on the overall architecture evolution and, in our case, in the overall software
performance. One way to ensure software evolution is through software archi-
tecture evaluations and assessments, Del Rosso (2006a). As a software system
evolves to support new requirements, potential new performance problems

13

may arise. The software architect must consider, in industrial domain, the
feasibility of the solution and balance the performance gained against the
analysis of the cost through a careful tradeoff analysis. In this context, eval-
uating performance for embedded real-time systems, means undertanding the
ratio between functionality and the cost of the required hardware, Ran and
Lencevicius (2003).

As researchers in the corporate research center we had the opportunity to
perform various assessments over the years and act as consultants for the Nokia
Mobile Phone business unit, Del Rosso (2006a). The performance evaluations
and assessments case studies presented in this paper represent part of the
research we have worked on during these years. The purpose of the case studies
was to determine how the current Series 40 architecture performed and what
should have been changed in order to fulfill the new requirements. The outcome
of the assessments had to be pragmatic, it had to consider therefore cost and
time-to-market constraints, and give clear directions and solutions in a fixed
period of time. On the other side, significant innovations and improvements
had to be considered and experimented.

6 Case Study 1

In this case study we analyzed the performance of the S40 mobile phone
platform. The project was commissioned by the Mobile Phone business unit
to our team in the corporate research center.

In the scenario selection phase we agreed to focus on the reference architecture
of the product family. The reference architecture represented the core features
and the core software from where each new product had to be derived. The
specific product architecture is derived from the common reference architec-
ture by adding features. Our work was a first attempt to understand how the
current architecture performed and to reason on the current design decisions.
The software product family had the ability to deliver more than 50 product
variants a year and each variant had its own specific settings. It was clear that
in order to be effective and have an impact we had to have a clear and well
delimited focus.

The reference architecture and consequently the core features represented our
target. The core features were shared by all the products in the family and
optimizations on the core part had the immediate advantage to impact all the
member in the family. Eventually, new requirements would demand specific
studies and a re-run of the process to focus on them. The reasoning to select the
scenarios followed the advices given in section 4 and features frequently used
by end-users were considered. Prioritization, ranking and discussions helped in

14

Scenarios Core/Optional

defined Products with the feature

Phone Start-Up Core Feature

Scrolling the Phonebook Core Feature

Incoming Call Core Feature

Table 1
Scenarios Selected

reducing the scenarios. Examples of some of the scenarios analyzed are shown
in table 1.

To understand the implications for the product family, we used two handsets
as representatives for the analysis. The handsets were part of the same product
family. One handset had a more complete and advanced set of features while
the other had basic features. In addition, the handset with advanced features
contained all the features included in the basic handset. Conceptually, referring
to figure 4, the advanced handset corresponds to Product 2 while the basic
handset corresponds to Product 1.

We chose to use trace instrumentation to profile software performance. By
running the scenarios in the handsets we extracted the run-time traces which
were then stored in text log files. Only significant events were recorded and,
it was part of the analysis to define what information and data were required
for our work.

Performance profiling using trace instrumentation has the advantage of ex-
tracting exactly the rum-time system properties as compared with modeling
and simulation. On the other hand, traces added to the original source code
affect software performance so that software system performance can be dis-
torted and thus the measurements, Steward (2001). A compromise is the best
solution and a tradeoff between added traces and the information needed must
be considered, Metz and Lencevicius (2003); Metz et al. (2005).

From the data gathered we proceeded to reconstruct the dynamic and static
views of our software architecture. A software architecture can be documented
using different views. For further information on documenting software ar-
chitectures and the use of architectural views see, Clements et al. (2002a).
Choosing the architectural views to reconstruct and analyze required a good
knowledge of the specific system. The Series 40 platform architecture uti-
lizes message passing as a communication paradigm. Analyzing the run-time
properties of the systems meant considering the software performance of the
message passing system.

We created various dynamic and static analysis tools to reconstruct the dy-

15

Fig. 5. From the Data to the Views

namic and static views of the software. For the dynamic views we used the
traces collected as input, while for the static analysis we used the actual source
code. Figure 5 shows the process and the various phases in the architectural
views reconstruction.

In total, we used five different architectural views to analyze the software per-
formance: the CPU load view, the message statics view, the run-time coupling
view, the message sequence chart view, and the static analysis view, see figure
6.

The CPU load view showed the CPU usage of the processes in the system. The
message statistics view showed the percentage of CPU time spent on handling
different message types during the scenarios. The run-time coupling view rep-
resented the run-time dependencies of the processes in the scenarios analyzed
and the weights in the arcs expressed, in our case, the number of messages
exchanged. The message sequence charts view showed message sequence chart
digrams with time stamps. The static analysis view was used to analyzed the
architectural dependencies of the system extraced from the source code, Riva
(2004). The static view included architecture component dependencies and
function call dependencies.

In the analysis, the CPU load view was the first view to be begin with. Pro-
cesses to be considered were the ones who consumed most of the CPU time
or demanded high processing time but for a short time. In the CPU load view
diagram, the two behaviors were represented respectively by long execution

16

Time

B

A

t1

%
 C

P
U

 L
o

ad

BA
m1
m2
m1

t1

t2

t3

....

A

120

B

C
320

262

CPU Load View MSC View

Message Statistics View
Run−Time Coupling View

Statistics by Message Type

m1 203 msg.; 4% CPU time

m2 179 msg.; 3.5% CPU time

m3 60 msg.; 3.2% CPU time

m4 22 msg.; 1.3% CPU time

Static Analysis View
Module A

....

send(m1,B)

.....

Fig. 6. Architectural Views Reconstructed

time and peaks.

After the CPU load view, we analyzed the message passing system perfor-
mance. Sending messages itself is not a time-consuming activity but messages
generate processing activities. There were different kinds of messages, and in
the message statistics view we considered their type. A message could be a
request for a particular resource, a service request, an acknowledgment or con-
tain only data. By marking the begin and end of the processing time of the
message in the traces we were able to identify the time spent in serving a
specific message type.

After the message statistics view, we considered the run-time coupling view.
The run-time coupling view considered the number of messages exchanged
between processes as a coupling measure. Highly coupled processes had high
ranked arcs in the directed weighted graph. Figure 6 shows an example of the
run-time coupling view when three processes, A, B and C are involved.We
chose the number of messages exchanged to consider the overhead created
by the processes’context switch activity. In a multi-tasking system, context
switches, when the processor switch between various processes, happens all
the time. With the context switch there is the additional overhead to save and
restore the process’s context afterward. In a message passing system, when
the message crosses the process’s address space boundary, a context switch
happens with the consequent processing time overhead.

Context switches can be limited by merging highly coupled processes. How-
ever, other considerations must be taken into account when merging run-time
entities, such as architecture modularity and organizational issues. For exam-
ple, the software architecture might have been arranged in that way consider-
ing the organizational structure and geographical boundaries of the develop-

17

ment teams and its structure may be difficult to change. The discussion of the
relationships and dependencies between software architecture and organiza-
tional structure is beyond the focus of this paper. However, the topic has been
investigated in the literature, Conway (1968); Cockburn (1996); Herbsleb and
Grinter (1999).

Additionally, by watching the run-time coupling of the architecture consid-
erations can be made regarding its structure. The coupling view is the run-
time network topology of the system and anti-patterns can be discovered,
Fowler (1999), for example the god Class anti-pattern described in Smith and
Williams (1995).

Continuing with the analysis, we have the static analysis view. The static
analysis view was the software architecture reconstructed from the software
source code. The static analysis was used as a support for the dynamic analysis.
Run-time dependencies were traced back to source code dependencies. In this
way, the software run-time views were complemented with the static software
architecture view, enhancing software comprehension. In our work, we used
the tools and work done by Riva, Riva (2004).

The views were used to analyze the system from a certain perspective. How-
ever, only the combined use of the views had the ability to provide detailed
information from different angles. In this paper we focus on the software prod-
uct family domain but a discussion on the how to create the views and their
use has been described in our previous work, Del Rosso (2005b).

7 Results

We used the combination of the different views for the architecture recon-
struction and understanding. The architectural views were reconstructed for
both the handsets we had and we analyzed their commonalities and differences
in performance and run-time dynamics. Once a bottleneck was discovered we
had to consider the potential solutions and impact in the product and product
family architecture.

At the end of our work we had two main findings. We discovered a break
of an architectural rule during the system start-up and we identified the god
class antipattern, Smith and Williams (1995), in the reference product family
architecture.

The break in the architectural rule was found due to an anomalous activ-
ity that was consuming an unexpected high CPU time with an associated
high number of messages at phone start-up. The high number of messages

18

exchanged and the peak in CPU load view were just the manifestation of the
problem. After further analysis, we found that an architectural rule had been
broken and it was because legacy code was left from the previous architecture
design and it had not been removed. The fault did not cause any visible fail-
ure such as system crashes, however, software performance was affected. The
phone start-up feature constitutes one of the basic and fundamental func-
tionalities of a mobile phone. The affected source code was shared by all the
members of the product family. Consequently, the improvement had an im-
mediate effect on the software product family performance.

In addition, we identified a god class antipattern in the run-time reconstruc-
tion of the architecture. The god class antipattern, in a message passing sys-
tem, is represented by a task which concentrates most of the intelligence and
performs most of the work while other tasks in the systems are relegated to
minor and supporting roles. Messages were sent to one main task which had to
handle them by performing additional processing operations and eventually,
send back the results of the computation. The god class affects the perfor-
mance of the system since it constitutes a bottleneck. Additionally, with its
low modularity the god class shows a poor architectural choice which affects
the maintainability and evolution of the system. The god class antipattern
was a run-time architectural pattern of the S40 software platform architec-
ture. The pattern was in the core architecture and it was the result of a hectic
architecture evolution of over 15 years.

Summarizing, we considered core features in the scenario selection phase to
focus on the S40 core software platform. We analyzed the performance of the
phone software by reconstructing the dynamic and static views of the S40
software architecture. In the analysis, we found bottlenecks and problems in
the core architecture. Additionally, as part of the analysis, we considered the
implication and impact for the software product family. Core features are
shared by all the products in the family and imply a shared architecture and
source code between the products. The architectural problems were in the
core components, and as a consequence, performance improvements affected
the entire set of products. As part of the process, we demonstrated that the
improvements did not influence negatively the performance of other products.
The check was done by analyzing the feature dependency diagrams, the ar-
chitectural views and, by iterating the performance analysis process with the
improvements in place.

19

8 Dynamic Memory Management and Embedded Real-Time Sys-
tems

A dynamic memory management system has to keep track of memory blocks in
use in the system and at the same time it has to optimize the usage of memory.
Knuth defined dynamic storage algorithms as the algorithms for reserving
and freeing variable-size blocks of memory from a large storage area, where
these blocks are to consist of consecutive memory locations, Knuth (1997).
The study of dynamic memory allocation algorithms was started in the 70s,
Randell and Kuehner (1968); Purdom and Stigler (1970); Knowlton (1965);
Wilson et al. (1995).

Optimization of memory usage and software performance have been the focus
of the research community since the early days when resources were limited
and processing power scarce. In embedded real-time systems the considera-
tions above still hold. In addition, the total cost of the devices still heavily
depends on the amount of memory embedded.

The difference between embedded real-time systems and the PC world do not
end in the constrained environment of the former. In the system considered in
this paper and, in most of the existing embedded systems at the moment on the
market, there is no memory compaction and no virtual memory functions. In
addition, in real-time systems, performance is not the only thing that matters;
strict time deadlines must be respected. The failure to respect a deadline can
lead, for example, to the dropping of a phone call.

Only algorithms with explicit memory management have been examined in
the case study, despite the popularity of garbage collection algorithms, their
performance and memory requirements are still inadequate for the use in em-
bedded systems, Berger and Hertz (2005).

A dynamic memory management system is made of algorithms and data struc-
tures. General purpose algorithms and custom algorithms have been described
in the literature. Examples of general purpose algorithms are best-fit, first-fit,
the Doug Lea algorithm, Lea (2006), (which is used in the GNU libc), and
the Windows XP allocator, Ritcher (1997). On the other side, custom algo-
rithms have been implemented to optimize and exploit regularities in real
program behavior. Examples of custom allocators are the Apache web server
allocator, Apache Foundation (2006), the C++ Standard Template library
allocator, SGI (2006), and the GCC compiler allocator, Free Software Foun-
dation (2006). The use of custom algorithms do not always bring clear benefits
and their use must be careful considered and applied only when the benefits
are clear and quantified, Berger and Zorn (2002).

When considering dynamic memory management systems, designing the algo-

20

16B 24B 32B 512B 576B 640Bsize

sorted bins

chunks

+
Heap

Allocated Memory

Free Memory

Fig. 7. Pool System plus Heap

rithm is not enough, data structures are also important. Different heap layouts
can be used and their properties must be considered. For example, Microsoft
C++ uses one heap for allocations of less than 200 bytes, and a second heap
for all other allocations, Microsoft Corporation (1997). Segregated free lists
are preallocated lists of fixed size chunks of memory. They have been designed
to handle fixed size blocks allocations and their advantage is on speed and
memory fragmentation especially in system where many small blocks are al-
located, Noble and Weir (2001). The Doug Lea algorithm for example, Lea
(2006), uses segregated free lists, using exact size bins of a multiple of 8 bytes,
each for objects smaller than 64 bytes; for larger objects it is a pure best-fit
allocator and for very large requests (larger than 128K) it relies on the system
memory mapping facilities (if supported).

In the case study presented we have simulated two different memory layouts.
The first layout was made of a contiguous memory block of memory, that
we have called the heap, and the second layout was made of a heap plus a
segregated free list data structure, see figure 7.

9 Case Study 2

The scope of our study was the analysis and the evaluation of dynamic mem-
ory systems for the Series 40 software product family architecture. Multimedia
features have gradually been introduced in mobile phones and their require-
ments are demanding especially in embedded systems where memory and CPU
power are limited. The S40 software product family had a dynamic memory
management, based on a heap plus pool data structure, common for all the
members of the product family. However, the S40 software architecture had
evolved and a quantitative assessment was needed in order to assess how well
the current memory management system performed.

In order to evaluate the impact of the features on the memory system we chose

21

a set of key scenarios containing core features and non-core features. Some of
the key performance scenarios selected were:

• Sending and Receiving 5 MMS of 100 KB each
• Downloading and playing a Java Midlet
• Browsing the Web
• Phone Start-Up

We created a simulation environment to simulate different dynamic memory
management systems and to extract the metrics described in appendix A. The
simulation environment design had to be extensible and permit to easily add
new heap layouts and algorithms. Its design followed the Abstract Factory
pattern and the Builder pattern, Gamma et al. (1995). For a reference on how
to design a simulation environment for dynamic memory management see Dan
Lo et al. (2004).

The workload was collected from data of allocations and deallocations in the
system while running the scenarios and the traces were stored in text log files.
Life-time and size distribution of the requests are very important for the study
of fragmentation and using real workload was an advantage. In our study we
were helped by the fact that we were analyzing a software already developed
and we could extract real traces by executing the scenarios. In early design
stages, mathematical functions to determine the size and the life time distri-
bution of the requests can be used. Uniform and the (negative) exponential
have been used in the literature; however, the assumption of randomness and
independence of the distribution of the life time and size of the blocks tend to
be false for most real programs, Wilson et al. (1995).

In a product family architecture, different products have different features and
therefore generate different workloads. Simulating multimedia features meant
to analyze high-end products. On the other hand, simulation of core features
focused on requirements and needs of low-end products. Taking into account
the scope of the analysis, we selected a multimedia phone model, a phone with
a superset of the features included in other products. The phone supported
core features plus additional multimedia features. Conceptually, the selected
phone corresponds to product 2 in figure 4 and phones without multimedia
features can be compared to product 1.

Table 2 presents the data characteristics of a few scenarios analyzed. To better
understand the product family domain, we added an additional column to
the table to list the products implementing the determined feature and to
specify whether the feature was optional or part of the core. In table 2 the
products listed serve as a demonstrative example; the data characteristics of
the scenarios are real. The last column in table 2 is important since it connects
a feature to patterns of memory usage and to the products implementing the

22

Scenarios Number of Obj Average Obj Size Largest Block Size Core/Optional

defined Allocated (Bytes) (Bytes) Products with the feature

Sending and Receiving 5 MMS of 100 KB each 781563 92.67 96793 Optional: P1, P2

Downloading and playing 119932 83.87 46363 Optional: P1, P2, P3

a Java Midlet

Browsing the Web 201744 70.90 38859 Optional: P1, P2, P3

Phone Start-Up 26811 50.02 18400 Core Feature

Table 2
Characteristics of the scenarios

Sending and Receiving Free Block Metric− Smallest−Biggest Internal Fragmentation Internal Fragmentation

5 MMS of 100KB Average Size (Bytes) Block Metric (Bytes) Worst-Case (Bytes) Average Value (Bytes)

heap bf 16489.97 669876 19454 16511.55

heap pool bf 85265.69 327264 13601 11299.17

Table 3
metrics and statistics for sending and receiving 5 MMS scenario

Phone Start-Up Free Block Metric− Smallest−Biggest Internal Fragmentation Internal Fragmentation

Average Size (Bytes) Block Metric (Bytes) Worst-Case (Bytes) Average Value (Bytes)

heap bf 52607.85 1175668 16972 11776.28

heap pool bf 321533.67 660204 8857 6863.53

Table 4
metrics and statistics in phone start-up

feature.

During the one year the case study lasted we simulated 12 algorithms with 2
different data structures. The two data structures used were the heap and heap
with a pool system, see figure 7. The algorithms simulated included first-fit,
best-fit and other algorithms with various heuristics, e.g. deferred coalescing of
freed blocks. In total, we investigated the performance and memory efficiency
of 24 dynamic memory management systems. Simulating only 4 scenarios for
each of the 24 dynamic memory management systems means creating 96 differ-
ent outcomes that must be analyzed. Herein the need to focus in the analysis
and the importance of selecting a manegeable number of scenarios.

In this paper we report a significant example from our work. The case study
presents the discussion of the best-fit algorithm used with the two different
heap layouts. In the simulation, we also included the original dynamic memory
management used in the Nokia S40 architecture. The performance of the S40
dynamic memory management set the reference point for the study and further
proposed improvements had to be compared with its performance. However,
for confidentiality reasons we cannot describe its internal structure.

In table 3 and table 4 we have summarized the metrics extracted for two of
the scenarios that were more dissimilarly in the data workloads. In tables 5
and 6 are presented the performance metrics.

23

Performance Metric− Performance Metric− Performance Metric− Performance Metric−

5 MMS of 100KB Worst Case Allocation Average Scans Allocation Worst Case Deallocation Average Scans Deallocation

heap bf 192 69.12 198 56.31

heap pool bf 30 9.89 16 6.20

Table 5
Performance, sending and receiving 5 MMS of 100KB scenario

Phone Start-Up Performance Metric− Performance Metric− Performance Metric− Performance Metric−

Worst Case Allocation Average Scans Allocation Worst Case Deallocation Average Scans Deallocation

heap bf 157 31.24 169 30.70

heap pool bf 5 1.00 2 1.00

Table 6
Performance, phone start-up scenario

10 Results

The result presented does not and does not want to cover and present the
definitive study on the best dynamic memory management system. The sci-
entific literature has thoroughly investigated and analyzed dynamic memory
management systems given determined patterns of allocations Grunwald and
Zorn (1993); Wilson et al. (1995). An entire book describes how to manage
dynamic memory in systems with limited memory Noble and Weir (2001)
and dynamic memory management systems have been specifically designed
for multithreaded applications Berger et al. (2000). The scope of our work is
to reason and present a discussion on how to address and improve memory
usage in software product family architectures.

Assessing the software architecture for evolution means to estimate and eval-
uate the capacity of the architecture to incorporate new features. Multime-
dia features constitute particular challenges in the embedded systems domain.
Larger memory and demanding performance requirements are the characteris-
tics of multimedia features. However, the range of products in the S40 product
family includes also basic products with core features and sometimes, with no
multimedia features at all. Following the rationales described in section 4, we
approached the problem by simulating scenarios including multimedia features
and core features. At the end, we wanted to ascertain whether the dynamic
memory management system used in the S40 was adequate or if specific and
targeted product optimizations were needed.

The patterns of data allocation of the features varied quite much. Table 2
shows how the largest block size increased from the phone start-up scenario
to the MMS sending scenario. Multimedia features need to allocate larger
contiguous memory blocks than core features. And, in case a large enough
memory block is not available, the allocation fails affecting consequently the
stability of the system, see 8. This trend is not going to change since multime-
dia features, such as video streaming, will require larger and contiguous free

24

memory blocks in the heap.

Comparing the value of the FBM metric for the two different data structures
used, the heap and the heap with a pool system, in table 3 and table 4,
we can see that a heap with a pool system achieved a better usage of the
memory. The heap with a pool system presented a higher value for the FBM
metric, consequently, it presented a more compacted heap in both scenarios.
To evaluate and understand whether the allocators could have failed during the
scenarios, the SBBM metric was considered. The SBBM metric is a watermark;
if its value is lower than the largest block allocated during the simulation of
the scenario, a system failure may occur. Furthermore, values too close to the
potential failure point must be avoided. In both the scenarios simulated, the
value of the SBBM metric was above the largest block allocation of 100KB,
see table 2, for both the allocators. However, the SBBM metric value halved
in the sending and receiving 5 MMS scenario. Considering the SBBM metric,
the heap data structure performed better than the heap with a pool data
structure since it provided a much larger SBBM value. This result showed a
limitation of the heap with the pool data structure for large block allocations
compared to the heap data structure.

Regarding the allocators performance, tables 5 and 6 show that the heap with
a pool clearly outperforms the heap data structure. The explanation comes
from the fact that the majority of the allocations were still small memory
blocks, as shown by the average size of the requests, see table 2. Requests
in the pool are served using a FIFO (First In First Out) policy while in the
heap, the free list data structure must be traversed to serve the allocations
and deallocations. Considering fragmentation, a pool system does not present
external fragmentation, but it can have internal fragmentation. However, in
the simulation, the internal fragmentation was lower in the heap with a pool
data structure.

Overall, the simulation of the best-fit with the two data structures showed
that the heap with a pool was the more suitable data structure for the system
considered. Small block allocations were better served by a data structure with
a heap and a pool, Noble and Weir (2001). Additional optimizations for the
pool data structure are still possible. For example, we used genetic algorithms
to define the size of the pool data structure given the allocations workload,
Del Rosso (2006).

On the other hand, the pool had limitations with large block allocations.
Large block allocations need a system where large and contiguous free mem-
ory blocks are available. If the trend of the increase in size of memory allo-
cations holds and from the considerations above, optimizations for small and
large block allocations may require a different dynamic memory management
system. In this context, dynamic memory management from the PC world,

25

memory compaction, garbage collectors or more advanced allocators could
gradually be investigated and introduced in the embedded systems domain,
Lea (2006); Wilson (1992); Berger et al. (2000). The results and distintions
between multimedia phones and low-end phones may have been predictable
but the analysis highlighted and presented quantified results. With quantified
data we had the possibility to assess the risks and analyze the tradeoffs in the
product family.

To summarize, different phones have different features and we considered fea-
tures and scenarios as a way to identify different products. The scenario selec-
tion phase and feature analysis helped in defining the focus and the context of
the analysis at the beginning. In the simulation, expertise in dynamic memory
management was necessary. In the analysis we considered the performance and
memory efficiency of different dynamic memory management systems. Fur-
thermore, we focused on the improvements and tradeoffs for the S40 software
product family. In our case, the dynamic memory management system was
based on a heap with a pool data structure, it was part of the platform and
all the products used the same implementation. Given the different features’
requirements, the analysis considered the tradeoff of custom dynamic memory
management systems for different mobile phones against a common dynamic
memory management system that could work well enough for the situation.
Analyzing the tradeoffs between memory efficiency and software product fam-
ily evolution, we chose a common dynamic memory management system based
on the heap with a pool data structure. The evaluation found no real need for
a targeted optimization given the current workload. Therefore, an additional
variation point in the software product family architecture was avoided.

A common dynamic memory system simplifies the management of the product
family; it works with performance compromises but it was shown to be good
enough for the system studied at that point in time.

11 Software Performance Tuning for Software Product Families

Performance analysis of software product family architectures concerns the
evaluation and analysis of features, see figure 2. In this context, the selected
scenarios express the link between features and products to be analyzed, see
figure 1. Subsequently, architectural transformations and code optimizations
are performed. Figure 2 is traversed in the other directions too, from the
source code and the software architecture level to the feature level. At the
end, the impact of the improvements are evaluated against all the products in
the family.

Depending on the stage of the software in the life cycle, different techniques

26

can be used. Simulation, modeling and prototyping techniques are applied in
the early software stages. Measurements and profiling can be utilized in later
stages. Different architectural transformations can be applied to the architec-
ture design and they differ to the extent in which they cover the architecture.
The transformation can have an architecture wide impact by imposing an ar-
chitectural style, Shaw and Garlan (1996); Buschmann et al. (1996), or cover
only a part of the architecture by applying design patterns, Gamma et al.
(1995); Fowler (1999).

Architectural changes to the product family reference architecture have a wide
and deep impact considering that all the products in the family will be affected,
positively or negatively. When changes are specifically targeted to the product
architecture, improvements are made to the quality of the product; however,
architectural transformations may imply changes to the reference architecture
or to a common architectural component, thus, affecting other products in the
family.

In the first case study, in section 6, we have shown how optimizations made to
the reference product family architecture benefit the entire line of products.
In that case, improvements were made at a system start-up component and on
the core architectural design. However, in some cases, changes may negatively
affect some products in the family and their impact must be evaluated and
analyzed.

In the second case study, in section 9, to respond to conflicting requirements
for low-end and high-end phones for memory management, we made some con-
siderations during the analysis. While a common design approach to different
requirements (low-end, high-end phones patterns of memory allocations) may
not be good for some products in the family, a compromise was considered
good enough, for the system considered, at that point in time.

Adding targeted optimizations to different products have clear advantages in
terms of performance. However, the product family’s architecture maintain-
ability decrease with the introduction of different software modules having
different implementations and parameters. Increasing the variability of the
product family architecture erodes its benefits. Quality and time-to market
get their strengths from the commonalities in the product family architecture
which also ease the software maintenance activity. The time spent on software
maintenance is expensive and has been estimated to cover 80% of the activities
of the software development process, Pigoski (1996); Glass (2003).

The increase of commonalities follows the natural process of the product family
evolution. Features descension is the process of features once instantiated only
in particular products of the family and then, included in all the products of
the family, as commodities, Lehman (1994); Maccari and Heie (2005). For

27

example, this is the case of multimedia features included first only in high-end
phones and then incorporated as core set features of the product family.

However, even though the trend is toward an increase of commonalities, the
analysis and the evaluation of the product line may highlight a divergence in
the product line evolution. A product line divergence happens if a special fo-
cus and different architectural choices are needed for a subset of the products
of the family or if a new subset of products are created due to the integration
of new features. In these situations a split in the product family can happen
with the creation of a new branch. The branch can then follow its own evo-
lutionary path (software product family cloning) or can be incorporated in
a hierarchical tree in the product family architecture as described in Bosch,
Bosch (2000), as specialization. The second alternative has the advantage of
exploiting the commonalities of the product family while developing solutions
more appropriate for its own evolution.

A careful analysis of the tradeoffs is essential in software performance analysis
and the advantages and disadvantages of every choice must be considered.
There is not a general solution for the tradeoffs analysis. Given a set of dif-
ferent architectural design solutions, the chief architects, the assessment team
together with the system’s stakeholders must evaluate them and set the pri-
orities of the assessment. For example, the analysis may set to what degree a
compromise is made between software performance, software modularity and
organizational issues.

To conclude, the process of software performance evaluation requires a clear
understanding of different domains: software architecture assessments, soft-
ware performance and software product family architecture.

12 Related Work

A method to evaluate the performance of a software product family archi-
tecture includes the understanding of the different domains presented in this
section. The software performance scientific literature does not have explic-
itly targeted software product family architectures and vice versa, software
product family architecture literature does not mention software performance.
Our aim is to enhance the current state of the art with the discussion of the
convergence of the study of software performance in software product family
architectures.

The evaluation and optimization of software product family architectures re-
quire the convergence of several domains and research areas. The performance
analysts must understand and be familiar with the domain of software ar-

28

chitecture assessments, software performance and software product family ar-
chitectures. In addition, depending on the evaluation, other domains can be
included, for example, dynamic memory management and embedded real-time
systems architectures.

Software architecture assessments have been used to evaluate software qual-
ity attributes such as evolvability, maintenability and other non-functional
quality attributes that affect the whole software architecture. Different assess-
ment methods have been experimented in the scientific literature. Scenario-
based assessment methods include the SAAM (Software Architecture Analysis
Method), Kazman et al. (1996), and the ATAM (Architecture Tradeoffs Anal-
ysis Method), Kazman et al. (2000), developed at the Carnegie Mellon Soft-
ware Engineering Institute and described in the book, Clements et al. (2002b).
Bengtsson and Bosch, Bengtsson and Bosch (1998), propose a scenario-based
assessment method with emphasis on architecture (re)design. A summary and
an analysis of different scenario-based assessment methods is described in Do-
brica and Niemelä (2002). To date, none of the scenario assessment methods
have explicitly investigated the evaluation of product family architectures.
Even though, publications are recently focusing on the subject, Olumofin and
Misic (2005).

Performance is a non-functional quality attribute that is estimated using dif-
ferent quantitative techniques. RMA (Rate Monotonic Analysis), Klein et al.
(1993); Liu and Layland (1973), is used to estimate the schedulability of tasks
in real-time systems. Queuing networks are used to create models and to esti-
mate performance and resources usage. Petri nets are used to model concurrent
systems and network protocols. Markov chains represent another quantitative
modeling technique to study performance analysis.

In the early phases of a software development project when performance mea-
surements of the software cannot be made, modeling, simulations and pro-
totyping techniques are fundamental and, a good reference on modeling and
performance analysis is given by Jain (1990). Later, in the software develop-
ment stage, measurements, instrumentation and profiling techniques can be
used to tune the existing software, Metz and Lencevicius (2003); Metz et al.
(2005).

Dynamic memory management is a topic that has been studied for a long time
but it is still an important area where improvements can be made. A good sur-
vey and one of the most cited papers on dynamic memory management is the
survey by Wilson et al. (1995). Dynamic memory management for embedded
real-time systems involves optimizations for limited resources and small block
allocations; design patterns for systems with limited memory are described in
the book by, Noble and Weir (2001). On the other hand, embedded devices
are becoming more and more advanced with several functionalities. Appli-

29

cations that once ran only in the PC world are now found in mobile phones
called smart-phones. The trend is toward larger memory allocations and mem-
ory systems with an architecture similar to desktop computers. Approaches
optimized for multithreaded and distributed applications may gradually be
introducted in the embedded domain on the high-end segment, Berger et al.
(2000).

Model predictions and analysis techniques are included in software perfor-
mance evaluation methods to offer a quantitative approach to construct soft-
ware systems that meet performance objectives. The most well known method
is the SPE (Software Performance Engineering) method by Smith and Williams
(1995). SPE uses models to evaluate the tradeoffs and design choices to im-
prove the architecture design and the implementation of software systems.
The Pasa method Williams and Smith (2002) illustrates the use of SPE when
applied to software performance assessments.

A software component has been defined as unit of composition with contractu-
ally specified interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to composition rules, Weck
et al. (1998). Research on component-based software engineering, Szyperski
(1997), has also focused on performance evaluations and assessments. For ex-
ample, predictable assembly focuses on assembling component-based systems
that predictably meet their quality attributes, Hissam et al. (2003). Scenario-
based approaches have been used to predict real-time properties and qualities
of component-based systems, Bondarev et al. (2004); de Jonge et al. (2003).
The SPE method has been adapted and used to analyzed the performance of
component-based systems, Bertolino and Mirandola (2003b,a).

Even though component-based systems share a common conceptual base with
software product family architectures there are various elements and concepts
which differentiate them. Components in the software product family domain
tend to be relatively large and have the concepts of variability and common-
ality, Van Gurp et al. (2001); Svahnberg et al. (2005). A component in the
software product family domain has still the property of easily incorporate new
requirements but it must also cover the differences in component requirements
between various products.

Product family architectures may include low-end and high-end products. Ad-
ditionally, different design choices may have been implemented and instanti-
ated in different product categories. A thorough analysis of the tradeoffs and
design alternatives must be investigated and this was one of the scopes of
our paper. To our knowledge, none of the work on software performance have
focused on software product family architectures. We have applied and ex-
tended the SPE to cover software product family architectures emphasizing
the analysis of the tradeoffs, design and implementation choices, Del Rosso

30

(2005a, 2006b, 2004).

Several publications in the literature cover the design and the evolution of a
software product family, a list of relevant books include Jazayeri et al. (2000);
Bosch (2000); Clements and Northrop (2002); Gomaa (2004). However, none
of them investigate software performance and its impact on software design
and evolution of a software product family.

13 Conclusion and future work

In this work we have described performance evaluations of real-time embedded
systems in the context of software product family architectures. Evaluating
performance on these various domains constituted the main challenge.

The approach we have used is scenario-based and scenarios are used to specify
the focus of the analysis. In the scenario selection phase, domain analysis is
performed to delimit the part of the product family architecture we want to an-
alyze. After the scenarios selection phase, simulations and performance models
are used. In the analysis phase, the improvements are considered against the
impact on the architecture. The analysis of the tradeoffs includes the investi-
gation of the impact on the product family architecture.

We have used the approach within a Nokia product family architecture and we
have reported two case studies. The first case study concerned the performance
tuning of the software core platform and its core features. The second case
study focused on dynamic memory management efficiency and on the impact
of multimedia features on the software product family architecture.

In section 11, we have analyzed and discussed the impact of different opti-
mizations on product family architectures and suggested the advantages and
disadvantages of different architectural choices.

In future work, we plan to continue the study of how to improve software
performance in the context of software product family architectures. An addi-
tional interesting topic is to study other non-functional quality attributes and
their impact on software product family architectures.

Acknowledgements

This work is the result of architecture evaluations carried out by the Nokia
Research Center for the Nokia Mobile Phones business unit during a three year

31

period. In this regard, I would like to thank Andy Turner and Erling Stage
for the cooperation and support in our work. I would like to thank Jan Bosch,
Jilles Van Gurp, Adrian Flanagan, Jianli Xu, Yaojin Yang, Claudio Riva and
all the anonymous reviewers who have contributed to the improvement of the
quality of the paper.

A Fragmentation and Memory Efficiency

Memory fragmentation is the result of allocations and deallocations made by
the software during its lifetime which divides the memory into used and unused
areas. For every memory allocation request, the dynamic memory system must
find a large enough free block in due time. As consequence of high fragmenta-
tion, a large-enough contiguous memory block may not be found, leading to
errors and system failures. The failure to deallocate a block in due time may
affect the normal software operation with no predictable consequences.

The metrics presented in the subsections below aim to highlight potential
problems in the dynamic memory management system and offer guidance in
the analysis. Fragmentation and memory efficiency metrics measure the effi-
ciency of memory usage. On the other hand, performance metrics are used to
evaluate whether the system is able to satisfy time deadlines and performance.

Other measures of fragmentation have been described, Johnstone and Wilson
(1998); Wilson et al. (1995), however we needed to focus on the characteris-
tics of real-time embedded systems. Strict real-time deadlines makes the use
of memory compaction algorithms and garbage collectors inconvenient and,
explicit memory allocators still outperform allocators with indirect memory
access in terms of performance and memory usage, Berger and Hertz (2005);
Prechelt (2000). Enhancing the memory usage in embedded real-time systems
means limiting the fragmentation, in order to have large enough free blocks to
serve future allocation requests, and to ensure real-time requirements. Metrics
that measure fragmentation, memory usage efficiency and performance in the
context of embedded real-time systems must be able to highlight these issues.

A.1 Smallest-Biggest Block Metric (SBBM)

When serving a request, the main concern of the dynamic memory system is
to find a large enough free block. Because of fragmentation, a large enough free
block may not be found even though the aggregate amount of free memory is
higher than the request. In the case that a free block is not found, a failure
arises.

32

t1

t2

t3

10KB 14KB 6KB Biggest allocable block= 14KB

Biggest allocable block= 16KB

Biggest allocable block= 22KB

Smallest block= 14KB10KB 16KB 6KB

22KB 12KB 6KB

Allocated Memory Free Memory

Fig. A.1. Smallest-Biggest Block Metric

t

KB

100

Heap-size

SBBM

Largest allocated block

Fig. A.2. Smallest-Biggest Block Metric

The Smallest-Biggest Block Metric (SBBM) is extracted by analyzing the
heap during the entire simulation and by recording the largest free block in
the memory. At the end of the simulation, the minimum of these values is the
SBBM metric, see figure A.1.

If shown in a graph, the value of SBBM represented as a function of the
time is a monotonically decreasing function. A request larger than the SBBM
may have failed during the simulation. The graph in figure A.2 shows an
hypothetical situation where this happens. In the figure, the SBBM metric
value is smaller than the largest memory request during the simulation and
a potential software failure might have happened. The metric is expressed in
bytes.

33

A.2 Free Block Metric - Average Size (FBM-AS)

The Free Block Metric − Average Size (FBM−AS) is the average size of free
blocks in the heap during the simulation. The metric is expressed in Bytes.
The metric highlights the fact that a heap with larger free blocks, on average,
is more compact, and therefore, less fragmented.

The metric is expressed in Bytes to compare the average value with the largest
request during the simulation of the scenario. However, to compare this frag-
mentation value with other heap sizes, the metric can be normalized to the
heap size and a value between 0 and 1 can be returned. In case of 1 we have a
free heap with no allocations and, in case of values close to 0 we have a heap
that is very fragmented.

A.3 Internal Fragmentation (IF)

Internal fragmentation measures the memory wasted (in Bytes) when a request
is served by a larger free block. The memory wasted is internal to the allocated
block, therefore, it is called internal fragmentation.

Unfortunately it is not always possible to allocate exactly the free block size, as
rounding up the requests, for example, contributes to the internal fragmenta-
tion. In some allocators, the free block is split and only the necessary chunk of
memory is allocated; however, leaving small blocks in the memory contributes
to the increase of the external fragmentation, especially if the remaining chunk
of free memory is smaller than the minimum block size allocable in the system.

As an example, segregated free lists do not contribute to the external fragmen-
tation, but they do contribute to the internal fragmentation when a request
is served by a larger chunk of free memory.

A.4 Performances Metric (PM)

A different approach is needed when measuring performance in a simulation
environment. In this case, performance cannot be measured using the execu-
tion time.

The metric described here measures the performance using the number of
scans in the data structure needed to allocate and deallocate a memory block.
Whenever an application requests a free block, the dynamic memory manage-
ment system must find, in due time, a large enough free block. At the same

34

time, when a block is deallocated, it must be inserted at the right place in
the list of free blocks. For example, a size-ordered free list will require the
insertion of a freed block at the right position in the list according to its size.

The allocators used in the experiment have implemented the free list using a
linked list data structure. Performance is measured in this case as the number
of scans in the linked list. A different data structure can be used without
invalidating the metric. The performance metrics have been used for memory
allocations and deallocations to measure the average and the worst case value.
The worst case value is important when evaluating real-time systems.

These performance metrics have the benefit of being CPU independent. There-
fore, the metric values are not influenced by the trace instrumentation tech-
nique used for extracting the data. Including trace instrumentation in the
source code adds performance overhead that is not easy to calculate and in
some cases can harm and corrupt the performance measurements, Steward
(2001), even though attempts have been made to limit the problem, Metz and
Lencevicius (2003); Metz et al. (2005).

References

Apache Foundation, 2006. Apache web server: http://www.apache.org.
Bengtsson, P., Bosch, J., June 1998. Scenario-based software architecture

reengineering. Proceedings of the Fifth International Conference on Soft-
ware Reuse (ICSR), 308–317.

Berger, E. D., Hertz, M., October 2005. Quantifying the performance of
garbage collection vs. explicit memory management. Proceedings of the
20th annual ACM SIGPLAN conference on Object oriented programming
systems languages and applications 40 (10), 313 – 326.

Berger, E. D., McKinley, K. S., Blumofe, R. D., Wilson, P. R., November
2000. Hoard: a scalable memory allocator for multithreaded applications.
Proceedings of the ninth international conference on Architectural support
for programming languages and operating systems 28,34 (5,5), 117–128.

Berger, E. D., Zorn, Benjamin G.and McKinley, K. S., November 2002.
Reconsidering custom memory allocation. Proceedings of the Conference
on Object-Oriented Programming: Systems, Languages, and Applications
(OOPSLA).

Bertolino, A., Mirandola, R., 2003a. Modeling and analysis of non-functional
properties in component-based systems. Proc. International Workshop on
Test and Analysis of Component Based Systems TACoS 2003 82 (6).

Bertolino, A., Mirandola, R., 2003b. Towards component based software per-
formance engineering. Proc. 6th Workshop on Component-Based Software
Engineering: Automated Reasoning and Prediction, 1–6.

Bondarev, E., Muskens, J., de With, P., Chaudron, M., Lukkien, J., 2004. Pre-

35

dicting real-time properties of component assemblies: A scenario-simulation
approach. In: EUROMICRO ’04: Proceedings of the 30th EUROMICRO
Conference (EUROMICRO’04). IEEE Computer Society, Washington, DC,
USA, pp. 40–47.

Bosch, J., 2000. Design and Use of Sofware Architectures. Addison Wesley.
Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Sommer-

lad, P., 1996. Pattern-Oriented Software Architecture, Volume 1: A System
of Patterns. John Wiley & Sons.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord,
R., Stafford, J., 2002a. Documenting Software Architectures: Views and
Beyond. Addison-Wesley.

Clements, P., Kazman, R., Klein, M., 2002b. Evaluating Software Architec-
ture. Addison-Wesley.

Clements, P., Northrop, L., 2002. Software Product Lines. Addison Wesley.
Cockburn, A., 1996. The interaction of social issues and software architecture.

Commun. ACM 39 (10), 40–46.
Conway, M., 1968. How do committees invent. Datamation 14 (4), 28–31.
Dan Lo, C.-T., Srisa-an, W., Chang, J. M., August 2004. The design and

analysis of a quantitative simulator for dynamic memory management. The
Journal of Systems and Software 72 (3), 443–453.

de Jonge, M., Muskens, J., Chaudron, M., 2003. Scenario-based prediction
of run-time resource consumption in component-based software systems.
Proceedings of the 6th ICSE Workshop on Component-based Software En-
gineering (CBSE6), 19–24.

Del Rosso, C., March 24-26 2004. The process of and the lessons learned from
performance tuning of a product family software architecture for mobile
phones. Proceedings of the 8th European Conference on Software Mainte-
nance and Reengineering Tampere, Finland.

Del Rosso, C., 2005a. Dynamic memory management for software product
family architectures in embedded real-time systems. Proceedings of the
5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05),
211–212.

Del Rosso, C., November 2005b. Performance analysis framework for large
software intensive systems with a message passing paradigm. Proceedings
of 20th Annual ACM Symposium on Applied Computing, track Embedded
Systems: Applications, Solutions, and Techniques (EMBS), Santa Fe, New
Mexico, March 13 -17, 2005.

Del Rosso, C., 2006a. Continuous evolution through software architecture eval-
uation. Journal of Software Maintenance and Evolution: Research and Prac-
tice 18 (5), 351 – 383.

Del Rosso, C., April 2006b. Experiences of performance tuning software prod-
uct family architectures using a scenario-driven approach. Proceedings of
the 10th International Conference on Evaluation and Assessment in Soft-
ware Engineering (EASE), British Computer Society, 30–39.

Del Rosso, C., 2006. Reducing internal fragmentation in segregated free lists

36

using genetic algorithms. Proceedings of the 2nd International ACM Work-
shop on Interdisciplinary Software Engineering Research (WISER), 143 –
150.

Dobrica, L., Niemelä, E., July 2002. A survey on software architecture analysis
methods. IEEE Transaction on Software Engineering 28 (7), 638–652.

Fowler, M., 1999. Refactoring, improving the Design of the existing code.
Addison Wesley.

Free Software Foundation, 2006. Gcc home page: http://gcc.gnu.org/.
Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns. Ad-

dison Wesley.
Glass, R. L., 2003. Facts and Fallacies of Software Engineering. Addison Wes-

ley.
Gomaa, H., 2004. Designing Software Product Lines with UML. Addison Wes-

ley.
Griss, M. L., Favaro, J., D’Alessandro, M., June 1998. Integrating feature

modeling with rseb. Proceedings of the Fifth International Conference on
Software Reuse, 76–85.

Grunwald, D., Zorn, B., August 1993. Customalloc: Efficient synthesized mem-
ory allocators. Journal Software: Practice and Experience 23 (8), 851–869.

Herbsleb, J. D., Grinter, R. E., 1999. Splitting the organization and integrating
the code: Conway’s law revisited. In: ICSE ’99: Proceedings of the 21st
international conference on Software engineering. IEEE Computer Society
Press, Los Alamitos, CA, USA, pp. 85–95.

Hissam, S., Moreno, G., Stafford, J., Wallnau, K., 2003. Enabling predictable
assembly. J. Syst. Softw. 65 (3), 185–198.

Jain, R., 1990. Art of Computer System Performance Analysis. John Wiley &
Sons.

Jazayeri, M., Van Der Linden, F., Ran, A., 2000. Software Architecture for
Product Families. Addison Wesley.

Johnstone, M. S., Wilson, P. R., October 1998. The memory fragmentation
problem: Solved? Proceedings of the 1st international symposium on Mem-
ory Management 34 (3).

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A., S., 1990. Feature-
oriented domain analysis (foda). Software Engineering Institute, Carnegie
Mellon University technical report (CMU/SEI-90-TR-021).

Kang, K., Kim, S., Lee, J., Shin, E., Hu, M., January 1998. Form: A feature-
oriented reuse method with domain-specific reference architectures. Annals
of Software Engineering 5 (0), 143–168.

Kazman, R., Abowd, G., Bass, L., Clements, P., November 1996. Scenario-
based analysis of software architecture. IEEE Software, 47–55.

Kazman, R., Klein, M., Clements, P., 2000. Atam: A method for architecture
evaluation. Technical Report CMU/SEI-2000-TR-004.

Klein, M., Ralya, T., Pollak, B., Obenza, R., Gonzales Harbour, M., 1993. A
Practitioners Handbook for Real-Time Analisys. Kluwer Academic.

Knowlton, K. C., October 1965. A fast storage allocator. Communications of

37

the ACM 8 (10), 623 – 624.
Knuth, D. E., 1997. The Art of Computer Programming, Vol 1, Third Edition.

Addison Wesley.
Lea, D., 2006. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html.
Lehman, M. M., 1994. Software Evolution. John J. Marciniak (Editor), John

Wiley & Sons.
Liu, C. L., Layland, J. W., 1973. Scheduling algorithms for multiprogramming

in a hard real-time environment. Journal of the ACM (JACM) 20 (1), 40 –
61.

Maccari, A., Heie, A., February 2005. Managing infinite variability in mobile
terminal software. Software: Practice and Experience 35 (6), 513 – 537.

Metz, E., Lencevicius, R., May 3-11 2003. Efficient instrumentation for perfor-
mance profiling. Proceedings of the ICSE Workshop on Dynamic Analysis,
(WODA).

Metz, E., Lencevicius, R., Gonzalez, T. F., 2005. Performance data collec-
tion using a hybrid approach. In: ESEC/FSE-13: Proceedings of the 10th
European software engineering conference held jointly with 13th ACM SIG-
SOFT international symposium on Foundations of software engineering.
ACM Press, New York, NY, USA, pp. 126–135.

Microsoft Corporation, 1997. Microsoft Windows NT 4.0 Online Documenta-
tion. Microsoft Corporation, Redmon, Washington.

Noble, J., Weir, C., 2001. Small Memory Software: Patterns for system with
limited memory. Addison Wesley.

Olumofin, F., Misic, V., 2005. Extending the atam architecture evaluation
to product line architectures. Proceedings of the 5th IEEE/IFIP Working
Conference on Software Architecture. (WICSA).

Pigoski, T. M., 1996. Practical Software Maintenance: Best Practices for Man-
aging Your Software Investment. John Wiley & Sons.

Prechelt, L., October 2000. An empirical comparison of seven programming
languages. IEEE Computer 33 (10), 23–29.

Purdom, P. W. J., Stigler, S. M., October 1970. Statistical properties of the
buddy system. Journal of the ACM (JACM) 17 (4), 683 – 697.

Ran, A., Lencevicius, R., 2003. Making sense of runtime architecture for mo-
bile phone software. In: ESEC/FSE-11: Proceedings of the 9th European
software engineering conference held jointly with 11th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering. ACM Press,
New York, NY, USA, pp. 367–370.

Randell, B., Kuehner, C. J., May 1968. Dynamic storage allocation systems.
Communications of the ACM 11 (5), 297 – 306.

Ritcher, J., 1997. Advanced Windows, 3rd edition. Microsoft Press.
Riva, C., October 2004. View-based software architecture reconstruction. PhD

dissertation, Vienna University of Technology.
Rumbaugh, J., Jacobson, I., Booch, G., 2005. The Unified Modeling Language

Reference Manual, second edition. Addison-Wesley.
SGI, 2006. Standard template library: http://www.sgi.com/tech/stl/allocators.html.

38

Shaw, M., Garlan, D., 1996. Software Architecture: Perspective on an Emerg-
ing Discipline. Prentice Hall.

Smith, C. U., Williams, L. G., 1995. Performance Solutions. Addison Wesley.
Steward, D., April 2001. Measuring execution time and real-time performance.

Embedded Systems Conference (ESC).
Svahnberg, M., Van Gurp, J., Bosch, J., 2005. A taxonomy of variability re-

alization techniques. Software: Practice and Experience 35, 705–754.
Szyperski, C., 1997. Component Software - Beyond Object-Oriented Program-

ming. Addison-Wesley.
Van Gurp, J., Bosch, J., Svahnberg, M., 2001. On the notion of variability in

software product lines. Proceedings of the Working IEEE/IFIP Conference
on Software Architecture, WICSA, 45–54.

Weck, W., Bosch, J., Szyperski, C., 1998. Proceedings of the third Interna-
tional Workshop on Component-Oriented Programming (WCOP) (10).

Williams, L. G., Smith, C. U., ISBN:1-58113-195-X 2000. Software perfor-
mance antipatterns. Proceedings of the second international workshop on
Software and performance, 127 – 136.

Williams, L. G., Smith, C. U., 2002. pasa
SM : An architectural approach to

fixing software problems. Proceedings of the third international workshop
on Software and Performance (ISBN:1-58113-563-7), 179 – 189.

Wilson, P., November 1992. Uniprocessor garbage collection techniques. Inter-
national Workshop on Memory Management, Lecture Notes in Computer
Science (637), 1–42.

Wilson, P. R., Johnstone, M. S., Neely, M., Boles, D., September 1995. Dy-
namic storage allocation: A survey and critical review. Proc. Int. Workshop
on Memory Management Kinross, Scotland, UK.

39

